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Supplementary

S.1. The Multiple Clone Cancitis Model

Inspired by clinical observations the MCC model has been formulated in attempt to gain an under-
standing of the more complex dynamics such as resistance and oscillations.
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Figure S.1. Conceptual diagram for the parallel mutations. The WSCs (y0) have the possi-
bility to mutate into n types of mutated stem cells (y1, y2, . . . , yn).

Mutations can occur in the WSCs but the MSCs can themselves also mutate. Here we will consider
the two limits, either the WSCs mutate into different MSCs (parallel mutation), or the WSCs mutates
into a single mutated stem cell which initiate a sequence of mutations (sequential mutation).
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A conceptual diagram of the parallel mutation is depicted in Figure S.1. The diagram illustrates how
the healthy stem cells have probability to mutate into several malignant stem cell types and thereby
giving rise to the concept of cancer heterogeneity. Cancer heterogeneity can also be viewed as arising
through a sequential mutation process and an aggressive malignant cell type is likely to arise from such
a sequence of mutations. The sequential mutations are illustrated in Figure S.2, where the healthy stem
cells mutate into a posibly malignant cell type, which itself may mutate further and so on a number of
times n.
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Figure S.2. Conceptual diagram for sequential mutations. The wild type stem cells (y0) may
mutate to y1 and y1 then starts a sequence of mutations.

Each cell after multiple mutations may be a result of the mutations arriving in any order, thus
resulting in cells with equivalent DNA. However, the histology of the cells may differ causing the cells
to be phenomenologically different. Due to this phenomena a very large class of mutational landscapes
are possible. In simulations we may randomly chose an existing cell to mutate and randomly chose
the type of mutation (parallel or sequential) in each sufficiently small time intervals. Doing a Monte
Carlo simulation of such random process would give information about mean and variation but less
mechanistic insight.

In this paper we present a parallel MCC model and a sequential MCC model, allowing for parallel
mutations and sequential mutations, respectively. The two versions represent two limit cases of the
possible mutational landscape, thus we chose to study these and amazingly the two limit cases result
in very similar outcome in almost all cases. Further, with stochastic mutation between stem cell clones
intermediate cases are also covered.

S.1.1. The equations of the parallel Multiple Clone Cancitis Models

Let y0 and z1 denote the amount of wild type WSCs and the mature blood cells, respectively. Let
the amount of the i’th mutated stem cell type be denoted yi and let the amount of the corresponding i’th
mature cell from this cell line be denoted zi. Moreover, let the variable a denote the amount of death
cells. The immune response is lumped into the variable s with the exception of the CD8+ T-cells as
their effect is included explicitly in the model [1], which we adopt here in all the presented models.

A mathematical model for the cancer heterogeneity caused by parallel mutations in MPNs may be
formulated as
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ẏ0 =
(
r0ϕ0s − dy0 − a0

)
y0 + ξ0, (S.1a)

ẏi = (riϕis − dyi − d̃yiyi − ai)yi + ξi, for i = 1, 2, . . . , n, (S.1b)

żi = aiAiyi − dzizi, for i = 0, 1, . . . , n, (S.1c)

ȧ = dy0y0 + dz0z0 +

n∑
j=1

((
dy j + d̃y jy j

)
y j + dz jz j

)
− easa, (S.1d)

ṡ = rsa − ess + I, (S.1e)

where n being the number of malignant clones. The constant ri is the self-renewal rate for the stem
cells type i, dyi , dzi are the natural death rates, d̃yi is the T-cell dependent death rate for the malignant
stem cells. The constants ai describe the rates which stem cells proliferate into progenitor cells whereas
Ai are the amplification factors for which progenitor cells proliferate into mature cells by help of the
intermediate proliferative progenitor cells. Here ξi =

∑n
j=1 ξ j,i − ξi, j, where ξi, j represent a stochastic

mutational process for cell type j to cell type i. In the continuous limit ξ j,i = m j,iyi, where the constant
m j,i describe the probability for yi to mutate into a malignant stem cell of type y j corresponding to
a continuous mutation rate. In the stochastic case the mutation process is a a Poisson process. The
parameter rs is the rate for which the number of dead cells up regulates the immune response, es is
the elimination rate for the inflammatory level and I is an exogenous stimuli of the immune response
relative to the system of stem cells, e.g. chronic inflammation, smoking, pollution or obesity [2, 3].
Lastly, the ϕi = ϕi(y0, y1, ..., yn) are functions describing the inhibiting bone marrow niche feedback
from all stem cells onto cell type i, which is explicitly specified below. Default values for the model in
the case of JAK2+ MPNs can be found in Table A1.

Note that one could include several levels of progenitor cells between stem cells and mature cells,
e.g. introducing equations for the progenitor cells, let yi,0 and yi,p denote the stem cells and mature
cells,respectively and let the progenitor cells be denoted by yi, j for j = 1, 2, . . . , p − 1. The differential
equations for the progenitor cells are given by

ẏi,1 = ai,0yi,0 − dyi,1yi,1

...

ẏi,p = ai,p−1yi,p−1 − dyi,pyi,p

However, a quasi steady state approximation (QSSA) implies

yi,p =
ai,p−1

dyi,p

yi,p−1 = ... =

 p∏
j=1

ai, j−1

dyi, j

 yi,1 ≡ Aiyi,0.

Thus the final amount of mature cells may be found by the amount of WSCs multiplied by a suitable
factor describing the amplification factor.
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The MCC model is brought into dimensionless form in order to reduce the dimension of the model
as well as the number of free parameters. The derivation of the reduced MCC model follows the
approach proposed in [1]. The dimensionless variables are denoted by capital letters and the scaling
constants are denoted by the same symbols as the corresponding original variable with a bar, as an
example the WSC compartment (y0) can be expressed by y0 = ȳ0Y0 where Y0 is the dimensionless
variable and ȳ0 is a constant carrying units. The corresponding derivative of y0 with respect to the
dimensionless time T can be expressed

ẏ0 =
ȳ0

t̄
Y ′0,

with Y ′0 = d
dT Y0 where t̄ carries the unit with respect to time. Thus the continuous MCC model can be

expressed by

Y ′0 = t̄
((

s̄r0ϕ0S − dy0 − a0

)
Y0 +

ξ0

ȳ0

)
,

Y ′i = t̄
((

s̄riϕiS − d̂yi(Yi) − ai

)
Yi +

ξi

ȳi

)
,

Z′i = t̄
(
ȳi

z̄i
aiAiYi − dziZi

)
,

A′ = t̄

dy0

ȳ0

ā
Y0 + dz0

z̄0

ā
Z0 − ea s̄S A +

n∑
j=1

ȳ j

ā
d̂y j(Y j) +

z̄ j

ā
dz jZ j

 ,
S ′ = t̄

(
rs

ā
s̄

A − esS +
I
s̄

)
,

where d̂yi(Yi) = dyi + d̃yiYi.
Choosing the constants t̄, ȳ0, z̄0, ȳi, z̄i, ā and s̄ as in Table A2 yields,

Y ′0 = (Φ0S − 1) Y0 + Ξ0 (S.2a)

Y ′i =

 ri

r0
ΦiS −

d̂yi(Yi) + ai

dy0 + a0

 Yi + Ξi, (S.2b)

ε1Z′0 = Y0 − Z0, (S.2c)

ε1Z′i =
dzi

dz0

(Yi − Zi) , (S.2d)

ε2ε3A′ = by0Y0 + bz0Z0 +

n∑
j=1

(
by j(Y j)Y j + bz jZ j

)
− S A, (S.2e)

ε2S ′ = A − S +
I

es s̄
, (S.2f)

where i = 1, ..., n and ε1 = r0
dz0

s̄, ε2 = r0
es

s̄, ε3 = es
ea s̄ , by0 = dy0

ȳ0 t̄
s̄ā

dy0 +a0

ea
, bz j = dz j

z̄ j t̄
s̄ā

dy0 +a0

ea
, byi(Yi) =

d̂yi(Yi)
ȳi t̄
s̄ā

dy0 +a0

ea
. Lastly, the functions Φi and Ξi correspond to scaled versions of functions ϕi and ξi

respectively.
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Time scale separation by singular geometric perturbation theory (Fenichel theory) allows for a
model reduction. In particular, the full model consisting of 2n + 4 equations can be reduced to n + 1
equations. The magnitudes of the ε constants are very small thus revealing the slow and fast dynam-
ics of the model. The MPNs develop over a slow time scale and a quasi-steady state approximation
(QSSA) therefore provides a suitable approximation for the modeling of MPNs. An additional advan-
tage of the QSSA is that the number of free parameters are greatly reduced and important groupings of
the parameters are revealed.

The model reduction is obtained by letting ε→ 0 resulting in the following algebraic equations,

0 = Y0 − Z0, (S.3a)

0 =
dzi

dz0

(Yi − Zi) , (S.3b)

0 = by0Y0 + bz0Z0 +

n∑
j=1

(
by j(Y j)Y j + bz jZ j

)
− S A, (S.3c)

0 = A − S +
I

es s̄
, (S.3d)

From Eq (S.3a) and (S.3b) it can easily be deduced that Z0 = Y0 and Y j = Z j for j = 1, 2, ...n. Solving
(S.3c) and (S.3d) gives

A = −J +

√√
J2 +

n∑
j=0

2B jY j and S = J +

√√
J2 +

n∑
j=1

2B jY j,

where J = I
2es s̄ , 2B0 = by0 + bz0 and 2Bi = byi(Yi) + bzi for i = 1, 2 . . . , n.

Inserting the found expressions in (S.2a) and (S.2b) yields the reduced MCC model,

Y ′0 = R0Φ0

J +

√√
J2 +

n∑
j=1

2B jY j

 Y0 − D0Y0 + Ξ0 (S.4a)

Y ′i = RiΦi

J +

√√
J2 +

n∑
j=1

2B jY j

 Yi − (Di + KiYi) Yi + Ξi (S.4b)

where Ri = ri
r0

, Di =
dyi +ai

dy0 +a0
, Ki =

d̃yi
dy0 +a0

for i = 1, 2, .., n.
A specific choice of the inhibiting function ϕ is introduced. We consider the ϕ function proposed in

[1, 4] and generalize it to the case with n malignant stem cell lines, i.e.

ϕi(y0, y1, ..., yn) =
1

1 +
∑n

j=0 ci, jy j
, (S.5)

where ci, j describes how cell type i is inhibited by cell type j and ci,i = 1. The corresponding dimen-
sionless functions are given as,

Φi =
1

1 +
∑n

j=0 Ci, jY j
, (S.6)

where Ci, j =
ci, j

c j, j
.
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S.2. Sensitivity analysis

To address the sensitivity of the parameters of the MCC model we consider how the oscillations
changes when changing the non-default values 10% for simulated experiment in Figure 5. In Figure S.3
the simulations are shown for the perturbed parameter values. We see the same quantitative behavior
for the cell counts, i.e., oscillating cell counts. To compare the different scenarios on a single graph
we compute the y1 allele burden for the different simulations and they are depicted in Figure S.4.
Figure S.4 reveals that the parameters C and K are inverse correlated, i.e., increasing K by 10% results
in the same simulated allele burden as reducing C by 10%. Computing the correlation between the
allele burdens give a high correlation coefficient of 0.9 confirming that the simulated allele burdens
are quantitative alike. However, we note that the amplitude of the oscillations is quite sensitive to the
change in the parameter values as depicted in Figure S.3. The relative percentage change of mean,
amplitude and frequency for the allele burden are listed in Table 1.

(a) C increased 10% (b) C decreased 10%

(c) K increased 10% (d) K decreased 10%

Figure S.3. The figure depicts the simulation scenario from Figure 5 where the non-default
parameters have been increased/decreased 10% to investigate the sensitivity of the param-
eters. Note that the change affects the amplitude and frequency. Moreover the effect of
changing K and C seems to be inverse proportional.
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Figure S.4. Allele burden for the simulation in Figure 5 along with the allele burden for the
simulations with C and K changed by 10%.
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