

Green Finance, 5 (1): 18–67. DOI: 10.3934/GF.2023002 Received: 16 August 2022 Revised: 22 October 2022 Accepted: 08 November 2022 Published: 18 January 2023

http://www.aimspress.com/journal/GF

## *Research article* Green bond market boom: did environmental, social and governance criteria play a role in reducing health-related uncertainty?

#### Vitor Miguel Ribeiro\*

Econometrics Group, Department of Economics, Faculty of Economics, University of Porto. Rua. Dr. Roberto Frias, 4200-464 Porto, Portugal

\* Correspondence: Email: vsribeiro@fep.up.pt; Tel: +351-220-426-268.

### **Supplementary Appendix**

Appendix A

|                            | λlopt <sup>*</sup>  | ×               | Marginal effects of the DSDM |           |                        |           |           |           |  |
|----------------------------|---------------------|-----------------|------------------------------|-----------|------------------------|-----------|-----------|-----------|--|
| Covariates                 | $[\lambda_{LSE}^*]$ |                 |                              |           |                        |           |           |           |  |
|                            | RIDGE               | Post-estimation | Short run                    |           |                        | Long run  |           |           |  |
|                            |                     | OLS             | Direct                       | Indirect  | Total                  | Direct    | Indirect  | Total     |  |
| VI1BusinInten              | 0.1316              | 0.1259          | 0.0384                       | 0.0140    | 0.0524                 | 0.0612    | 0.0545    | 0.1157    |  |
|                            | [0.2171]            | [0.1259]        | (0.0464)                     | (0.1093)  | (0.1278)               | (0.0744)  | (0.2437)  | (0.2816)  |  |
| VI2ATourismFlow            | -0.1264             | -0.1280         | -0.0235                      | 0.1064    | 0.0829                 | -0.0316   | 0.2086    | 0.1770    |  |
|                            | [-0.0809]           | [-0.1280]       | (0.0521)                     | (0.0998)  | (0.0874)               | (0.0795)  | (0.2022)  | (0.1942)  |  |
| VI4ForeignOpen             | 0.0082              | 0.0089          | 0.0208*                      | 0.0433    | 0.0641                 | 0.0351*   | 0.1054    | 0.1405    |  |
|                            | [-0.0066]           | [0.0089]        | (0.0111)                     | (0.0537)  | (0.0585)               | (0.0188)  | (0.1223)  | (0.1333)  |  |
| VI5IntConsump              | 0.4548              | 0.4610          | 0.4662***                    | -0.1495   | 0.3166                 | 0.7244*** | -0.0483   | 0.6761    |  |
|                            | [0.3327]            | [0.4610]        | (0.1437)                     | (0.2519)  | (0.2872)               | (0.2266)  | (0.5437)  | (0.6310)  |  |
| VI3Mob                     | 0.1521              | 0.1505          | -0.0296                      | 0.1029    | 0.0733                 | -0.0408   | 0.2055    | 0.1647    |  |
|                            | [0.1827]            | [0.1505]        | (0.0672)                     | (0.2095)  | (0.2313)               | (0.1079)  | (0.4536)  | (0.5021)  |  |
| VI6EldIPSS                 | 0.0656              | 0.0661          | -2.4050                      | -15.0124  | -17. 4174              | -4.5189   | -32.5838  | -37.1057  |  |
|                            | [0.0497]            | [0.0661]        | (5.2987)                     | (13.3379) | (12.4784)              | (8.0918)  | (27.9652) | (27.7303) |  |
| Mean of FE                 |                     |                 |                              |           | 3.3062                 |           |           |           |  |
| Time-lagged χ              |                     |                 | 0.3459*** (0.0397)           |           |                        |           |           |           |  |
| Spatial and time-lagged    | φ                   |                 | -0.0785 (0.0525)             |           |                        |           |           |           |  |
| Spatial p                  |                     |                 |                              |           | 0.4870*** (0.067)      | 3)        |           |           |  |
| $\sigma_{\varepsilon}^2$   |                     |                 |                              |           | 0.0135***(0.0013       | 5)        |           |           |  |
| $\mathbb{R}^2$             |                     |                 |                              |           | 0.0109                 |           |           |           |  |
| Log Pseudo-likelihood      |                     |                 | 1244.3117                    |           |                        |           |           |           |  |
| AIC                        | -2587.8640          |                 |                              |           |                        |           |           |           |  |
| BIC                        |                     |                 |                              |           | -2501.1540             |           |           |           |  |
| Obs.                       |                     |                 |                              |           | 1668                   |           |           |           |  |
| Stability (Identification) | [Endogeneity]       |                 |                              | Satisfie  | d (Satisfied) [Satisfi | ed]       |           |           |  |

| Table A1. Results with the application of a two-step machine learning procedure | e: |
|---------------------------------------------------------------------------------|----|
| RIDGE (first stage) and dynamic spatial Durbin model (second stage).            |    |

Notes. Considering k-fold cross-validation (with 10 folds) as the decision criterion, results determine that the value of  $\alpha$  that minimizes the mean squared prediction error (MSPE) is  $\alpha^* = 0$  such that RIDGE regression is the optimal choice. This implies that all 6 explanatory variables significantly affect the dependent variable such that none is excluded. Consequently, second-stage outcomes resulting from the application of DSDM coincide with those obtained in the benchmark exercise. The value of lambda (i.e. penalty level) that minimises the MSPE is given by  $\lambda_{LOPT}^* = 17.8375$ , where the value of MSPE corresponds to 0.03818. In turn, the largest lambda for which the MSPE is within one standard error of the minimal MSPE is given by  $\lambda_{LSE}^* = 671.5690$ . Estimated coefficients associated with  $\lambda_{LOPT}$ . Symbol \*\*\* (\*\*) [\*] represents 1% (5%) [10%] of significance level, respectively. The regression includes robust standard errors, which accurately take into account the cluster-correlated data by adjusting for within-cluster correlation, and the constant term was omitted.

| Covariates      | Tfe SFA       | Tre SFA     | MLrei SFA  | ILSfe SFA | MLred SFA | LSDVfe SFA |
|-----------------|---------------|-------------|------------|-----------|-----------|------------|
| VI1BusinInten   | 0.1170***     | -0.0494     | 0.0268     | -0.0616   | -0.0100   | -0.0025    |
|                 | (0.0000)      | (0.0498)    | (0.1603)   | (0.0503)  | (0.0491)  | (0.0757)   |
| VI2ATourismFlow | -0.0869 * * * | -0.0878 * * | -0.0342    | 0.0437    | -0.0880*  | -0.1832*   |
|                 | (0.0000)      | (0.0384)    | (0.1148)   | (0.0579)  | (0.0485)  | (0.1078)   |
| VI4ForeignOpen  | 0.0077***     | 0.0156      | 0.0184     | -0.0403   | 0.0136    | 0.0228     |
|                 | (0.0000)      | (0.0155)    | (0.0286)   | (0.1065)  | (0.0084)  | (0.0161)   |
| VI5IntConsump   | 0.8140***     | 0.8350***   | -0.6793*** | -0.0021   | 0.5203*** | -0.3018    |
|                 | (0.0000)      | (0.0621)    | (0.2147)   | (0.0089)  | (0.0485)  | (0.2231)   |
| VI3Mob          | 0.3526***     | 0.1090      | 1.2412     | -0.0478   | 0.1224    | -0.0219    |
|                 | (0.0000)      | (0.0771)    | (1.3045)   | (0.1030)  | (0.1003)  | (0.1372)   |
| VI6EldIPSS      | 0.1040***     | 0.2266***   | 0.0274     | -0.1229*  | 0.0596**  | -18.1665*  |
|                 | (0.0000)      | (0.0667)    | (0.0462)   | (0.0711)  | (0.0279)  | (10.9022)  |

Table A2. Use of time-variant models for stochastic frontier analysis.

**Notes**: Estimated coefficients through panel data time-varying SFA models should be interpreted as direct (i.e. ownmunicipality) effects since they correspond to representative coefficients of the  $\beta$  vector. Tfe SFA stands for true fixed effects SFA model (Greene, 2005). Tre SFA stands for true random effects SFA model (Greene, 2005) MLrei SFA stands for maximum likelihood (ML) random effects time-varying inefficiency effects model (Battese & Coelli, 1995). ILSfe SFA stands for iterative least squares time-varying fixed effects model (Lee & Schmidt, 1993). MLred SFA stands for ML random effects time-varying efficiency decay model (Battese & Coelli, 1992). LSDVfe SFA stands for modified LSDV time-varying fixed effects model (Cornwell et al., 1990). Symbol \*\*\* (\*\*) [\*] represents 1% (5%) [10%] of significance level, respectively. The regression includes robust standard errors, which accurately take into account the cluster-correlated data by adjusting for within-cluster correlation. Constant terms were deliberately omitted.

|                                |                | Absence of lags<br>in covariates | With lag in<br>VI5IntConsump | With lag in<br>VI1BusinInten | With lag in<br>VI2ATourismFlow |  |
|--------------------------------|----------------|----------------------------------|------------------------------|------------------------------|--------------------------------|--|
| VD2dInfCov L1                  |                | 0.0163                           | 0.0323                       | 0 0399                       | 0.0167                         |  |
| , <b>D 20</b> 111 00, _21      |                | (0.0103)                         | (0.0525)                     | (0.0163)                     | (0.0107)                       |  |
|                                |                | [0.86]                           | (0.0173)                     | [2.44]                       | [0.89]                         |  |
| VI1BusinInten                  | 0.1252***      | -0.0225                          | -0.0104                      | -0.0161                      | -0.0303                        |  |
|                                | (0.0392)       | (0.0308)                         | (0.0299)                     | (0.0293)                     | (0.0311)                       |  |
|                                |                | [-0.73]                          | [-0.35]                      | [-0.55]                      | [-0.97]                        |  |
| VI2ATourismFlow -0.1285***     |                | -0.0709                          | -0.0701                      | -0.0571                      | -0.0925                        |  |
|                                | (0.0371)       | (0.0264)                         | (0.0255)                     | (0.0251)                     | (0.0292)                       |  |
|                                |                | [-2.68]                          | [-2.75]                      | [-2.28]                      | [-3.17]                        |  |
| VI4ForeignOpen                 | 0.0080         | 0.0140                           | 0.0140                       | 0.0142                       | 0.0137                         |  |
|                                | (0.0206)       | (0.0198)                         | (0.0191)                     | (0.0188)                     | (0.0198)                       |  |
|                                |                | [0.71]                           | [0.73]                       | [0.75]                       | [0.69]                         |  |
| VI5IntConsump                  | 0.4616***      | 0.4950***                        | 0.4129***                    | 0.4132***                    | 0.4956***                      |  |
|                                | (0.0283)       | (0.0474)                         | (0.0445)                     | (0.0423)                     | (0.0472)                       |  |
|                                |                | [10.44]                          | [9.28]                       | [9.77]                       | [10.50]                        |  |
| VI3Mob                         | 0.1514***      | 0.1069                           | 0.0919                       | 0.0807                       | 0.1054                         |  |
|                                | (0.0357)       | (0.0529)                         | (0.0512)                     | (0.0504)                     | (0.0530)                       |  |
| VICELIDEE                      | 0.0/70***      | [2.02]                           | [1.80]                       | [1.60]                       | [1.99]                         |  |
| v loEldIPSS                    | $0.06/2^{***}$ | 0.0498                           | 0.0429                       | 0.0396                       | 0.0486                         |  |
|                                | (0.0151)       | (0.0312)                         | (0.0301)                     | (0.0295)                     | (0.0313)                       |  |
| VI5IntConsump I 1              |                | [1.39]                           | [1.43]                       | [1.34]                       | [1.55]                         |  |
| v151ntConsump_L1               |                |                                  | $(0.0/13^{+++})$             |                              |                                |  |
|                                |                |                                  | (0.0192)                     |                              |                                |  |
| VI1BusinInten L1               |                |                                  | [3.73]                       | 0 1027***                    |                                |  |
| VIIDusminten_EI                |                |                                  |                              | (0.0223)                     |                                |  |
|                                |                |                                  |                              | [4 61]                       |                                |  |
| VI2AtourismFlow L1             |                |                                  |                              | [1.01]                       | 0.0497                         |  |
| _                              |                |                                  |                              |                              | (0.0280)                       |  |
|                                |                |                                  |                              |                              | [1.78]                         |  |
| F-test                         | 229.9419***    | 51.0870***                       | 50.6117***                   | 54.4015***                   | 44.8917***                     |  |
| $\sigma_{\varepsilon}^2$ (MSE) | 0.0441         | 0.0427                           | 0.0408                       | 0.0399                       | 0.0427                         |  |
| <b>R</b> <sup>2</sup>          | 0.4528         | 0.4707                           | 0.4938                       | 0.5057                       | 0.4711                         |  |
| Log Likelihood                 | 429.3723       | 461.5681                         | 505.0072                     | 528.2470                     | 462.2972                       |  |
| Obs.                           | 1946           | 1946                             | 1946                         | 1946                         | 1946                           |  |

#### Table A3. Benchmark results with the adoption of different estimators.

IV applied to DSDM with GS2SLS

**Notes:** GMM stands for generalised method of moments, IV stands for instrumental variable and GS2SLS stands for generalised spatial two-stage least squares. Estimated coefficients through different spatial panel data estimators should be interpreted as direct (i.e. own-municipality) effects since these correspond to coefficients of the  $\beta$  vector. Symbol \*\*\* (\*\*) [\*] represents 1% (5%) [10%] of significance level, respectively. Constant terms were deliberately omitted. The IV approach assumes that the one period lagged dependent variable is influenced by all covariates according to which, by construction, the ones representative of the economic dimension are already lagged by one period in time. Consequently, the setting faces the danger that the one period lagged dependent variable is endogenous. The model consists of 6 exogenous variables and contains 12 possible instruments (i.e. all covariates and respective one period lagged covariates). We opt to use VI5IntConsump as IV of VD2dInfCov\_L1. Finally, t-ratios are presented within brackets and already take into account the rule clarified in Lee et al. (2022) according to which the criterion for trusting in t-ratio inferences is to have F-test  $\geq$  104.7 in the IV first-stage or, in case of considering  $10 \leq$  F-test < 104.7, the critical value 1.96 must be replaced by the critical value 3.43 to ensure the persistence of the symbol \*\*\* representative of 0.01 significance level.

Coefficients

GMM

| 1)                                            | spatial and time-peri                 |                         | Short run                         |                     |                         | Long run              |                         |                        |
|-----------------------------------------------|---------------------------------------|-------------------------|-----------------------------------|---------------------|-------------------------|-----------------------|-------------------------|------------------------|
| 1)                                            | spatial and time-period fixed effects |                         | Direct                            | Indirect            | Total                   | Direct                | Indirect                | Total                  |
| 1)                                            | <b>β vector</b>                       | θ vector                |                                   |                     |                         |                       |                         |                        |
|                                               |                                       |                         |                                   |                     |                         |                       |                         |                        |
| Fime-lagged $\chi$<br>Spatial and time-lagged | 0.6166***<br>(0.0458)<br>-0.2535***   |                         |                                   |                     |                         |                       |                         |                        |
| )                                             | (0.0459)                              |                         |                                   |                     |                         |                       |                         |                        |
| VI1BusinInten                                 | -0.0116<br>(0.0181)                   | -0.0119<br>(0.0270)     | -0.0125<br>(0.0179)               | -0.0236<br>(0.0416) | -0.0361<br>(0.0511)     | -0.0319<br>(0.0463)   | -0.0558<br>(0.1066)     | -0.0877<br>(0.1299)    |
| VI2ATourismFlow                               | -0.0132<br>(0.0212)                   | -0.0240<br>(0.0353)     | -0.0165<br>(0.0209)               | -0.0443<br>(0.0505) | -0.0608<br>(0.0527)     | -0.0423<br>(0.0555)   | -0.1122<br>(0.1338)     | -0.1545<br>(0.1424)    |
| VI4ForeignOpen                                | 0.0068**<br>(0.0034)                  | -0.0083<br>(0.0098)     | 0.0063*<br>(0.0035)               | -0.0088<br>(0.0145) | -0.0025<br>(0.0156)     | 0.0166*<br>(0.0090)   | -0.2259<br>(0.0375)     | -0.0059<br>(0.0402)    |
| VI5IntConsump                                 | 0.3527***<br>(0.0683)                 | -0.0199**<br>(0.1023)   | 0.3661***<br>(0.0666)             | -0.1760<br>(0.1509) | 0.5421***<br>(0.1595)   | 0.9525***<br>(0.1790) | -0.4165<br>(0.4678)     | 1.3690***<br>(0.5145)  |
|                                               | -0.0321<br>(0.0260)                   | 0.0335<br>(0.0541)      | -0.0290<br>(0.0267)               | 0.0343<br>(0.0818)  | 0.0052<br>(0.0910)      | -0.0755<br>(0.0694)   | -0.0957<br>(0.2093)     | 0.0202<br>(0.2312)     |
| Vicen of FE (Obs.)                            | 4.8252<br>(3.1199)                    | -12.20/6***<br>(4.4236) | 3.8460<br>(2.9826)                | (5.8505)            | -12. 5656**<br>(5.3615) | 10.2608<br>(7.7818)   | -42.1551**<br>(16.8048) | -31.894**<br>(15.7239) |
|                                               | 2.0770 (1008)                         |                         |                                   |                     |                         |                       |                         |                        |
| Spatial p                                     | 0.3838*** (0.04                       | 7)                      |                                   |                     |                         |                       |                         |                        |
| $\sigma_{\varepsilon}^2$                      | 0.0019*** (0.00                       | 02)                     |                                   |                     |                         |                       |                         |                        |
| R <sup>2</sup> (Log Pseudo-likelihood)        | )                                     |                         | 0.0430 (2925.3837)                |                     |                         |                       |                         |                        |
| AIC (BIC)                                     | -5916.3910 (-58                       | 829.6810)               |                                   |                     |                         |                       |                         |                        |
| Stability (Identification) [E                 | Indogeneity]                          |                         | Satisfied (Satisfied) [Satisfied] |                     |                         |                       |                         |                        |
| 2)                                            |                                       |                         |                                   |                     |                         |                       |                         |                        |
| Fime-lagged $\chi$                            | 1.1431***<br>(0.0679)                 |                         |                                   |                     |                         |                       |                         |                        |
| Spatial and time-lagged                       | 0.6333***                             |                         |                                   |                     |                         |                       |                         |                        |
| )                                             | (0.0835)                              |                         |                                   |                     |                         |                       |                         |                        |

Green Finance

Volume 5, Issue 1, 18–67.

|                                          | spatial and time-period fixed effects |            | Direct                            | Indirect             | Total      | Direct     | Indirect   | Total     |
|------------------------------------------|---------------------------------------|------------|-----------------------------------|----------------------|------------|------------|------------|-----------|
|                                          | <b>β</b> vector                       | θ vector   |                                   |                      |            |            |            |           |
| VI1BusinInten                            | -0.0072*                              | -0.0118    | -0.0071*                          | -0.0143              | -0.214*    | 0.2432     | -0.2231    | 0.0201*   |
|                                          | (0.0043)                              | (0.0121)   | (0.0041)                          | (0.0127)             | (0.0120)   | (4.5798)   | (4.5808)   | (0.0117)  |
| VI2ATourismFlow                          | 0.0060                                | 0.0269***  | 0.0068                            | 0.0319***            | 0.0388***  | 0.0096     | -0.0452    | -0.036*** |
|                                          | (0.0052)                              | (0.0092)   | (0.0049)                          | (0.0104)             | (0.0080)   | (0.9263)   | (0.9266)   | (0.0068)  |
| VI4ForeignOpen                           | 0.0033                                | -0.0090    | 0.0034                            | -0.0084              | -0.0051    | -0.1191    | 0.1243     | 0.0052    |
|                                          | (0.0055)                              | (0.0107)   | (0.0053)                          | (0.0123)             | (0.0133)   | (2.5849)   | (2.5846)   | (0.0124)  |
| VI5IntConsump                            | 0.0161                                | -0.1060*** | 0.0128                            | -0.1189***           | -0.1061*** | -0.1028    | 0.2011     | 0.0982*** |
|                                          | (0.0132)                              | (0.0287)   | (0.0130)                          | (0.0318)             | (0.0311)   | (9.6211)   | (9.6222)   | (0.0299)  |
| VI3Mob                                   | -0.0057                               | -0.0435**  | -0.0069                           | -0.0514**            | -0.0583 ** | 0.0992     | -0.0457    | 0.0535**  |
|                                          | (0.0049)                              | (0.0202)   | (0.0046)                          | (0.0232)             | (0.0238)   | (0.6538)   | (0.6536)   | (0.0210)  |
| VI6EldIPSS                               | 2.3192**                              | 2.7086     | 2.3709**                          | 3.6882*              | 6.0591***  | -7.3984    | 1.8832     | -5.515*** |
|                                          | (1.0106)                              | (1.7431)   | (0.9430)                          | (2.0325)             | (1.5420)   | (237.9190) | (237.9250) | (1.0957)  |
| Mean of FE (Obs.)                        |                                       |            |                                   | -2.0239 (1668)       |            |            |            |           |
| Spatial p                                | 0.1456*** (0                          | .0456)     |                                   |                      |            |            |            |           |
| $\sigma_{\varepsilon}^{2}$               | 0.0006*** (0                          | .0001)     |                                   |                      |            |            |            |           |
| R <sup>2</sup> (Log Pseudo-likelihood)   |                                       |            | 0.00                              | 013 (3106.9334)      |            |            |            |           |
| AIC (BIC)                                |                                       |            | -79                               | 37.5200 (-7850.8100) |            |            |            |           |
| Stability (Identification) [Endogeneity] |                                       |            | Satisfied (Satisfied) [Satisfied] |                      |            |            |            |           |

**Notes**: t-statistics in parenthesis and degrees of freedom in brackets. Symbols \*\*\*, \*\* and \* represent one, five, and ten percent significance levels. The regression includes robust standard errors estimations and robust variance estimations, which accurately take into account the cluster-correlated data by adjusting for within-cluster correlation.

# Table A5. Re-estimation of coefficients considering:(1) only 35 municipalities of the MAL and MAP(2) remaining 243 municipalities of mainland Portugal.

|                                       | DSDM                 |                     | Short run           |                       |               | Long run           |                     |                      |
|---------------------------------------|----------------------|---------------------|---------------------|-----------------------|---------------|--------------------|---------------------|----------------------|
|                                       | spatial and time-per | riod fixed effects  | Direct              | Indirect              | Total         | Direct             | Indirect            | Total                |
|                                       | β vector             | θ vector            |                     |                       |               |                    |                     |                      |
| (1)                                   |                      |                     |                     |                       |               |                    |                     |                      |
| Time-lagged $\chi$                    | 0.3559***            |                     |                     |                       |               |                    |                     |                      |
|                                       | (0.0439)             |                     |                     |                       |               |                    |                     |                      |
| Spatial and time-lagged               | -0.0593              |                     |                     |                       |               |                    |                     |                      |
| Ψ<br>MID II                           | (0.0821)             | 0.1000              | 0.1150              | 0.2221                | 0.4271        | 0.0007             | 1 20 47             | 1 1075               |
| VIIBusinInten                         | 0.0816               | 0.1082              | 0.1150              | 0.3221                | 0.4371        | 0.2207             | 1.2067              | 1.4275               |
| VIO A T                               | (0.0955)             | (0.1329)            | (0.0970)            | (0.2527)              | (0.3014)      | (0.1784)           | (1.7636)            | (1.8652)             |
| V12A10UrISmFlow                       | 0.0013               | -0.0/58             | -0.0136             | -0.1593               | -0.1/28       | -0.03/8            | -0.5344             | -0.5722              |
| WI4E and an Onen                      | (0.0604)             | (0.1206)            | (0.0568)            | (0.2272)              | (0.2406)      | (0.1010)           | (1.1908)            | (1.2394)             |
| v 14ForeignOpen                       | (0.6009)             | $1.7880^{***}$      | $1.1485^{*}$        | $4.0524^{***}$        | $5.8010^{**}$ | $2.3479^{*}$       | 10.4215             | 18./094              |
| VI5IntConsump                         | (0.0280)             | (0.8714)            | (0.0/14)<br>0.7116* | (2.0430)              | (2.4526)      | (1.5504)<br>1.0017 | (23.9433)<br>1 7358 | (20.7201)            |
| VISINCOnsump                          | $(0.7825)^{10}$      | (0.3441)            | $(0.7110^{\circ})$  | -0.8140               | (1.1280)      | (0.69/1)           | -1.7558             | -0.0441              |
| VI3Mob                                | (0.3312)<br>0.0489   | (0.3441)<br>0.4444* | 0 1227              | 0.0430)               | 1.0576*       | (0.0941)<br>0.2985 | 3 1758              | (0.4304)             |
| 151100                                | (0.1006)             | (0.2497)            | (0.1227)            | (0.5187)              | (0.5686)      | (0.2321)           | (3 5302)            | (3, 5302)            |
| VI6EldIPSS                            | -172881              | 19 1495             | -15 4969            | 24 6530               | 9 1561        | -23.0898           | 62 6167             | 39 5269              |
|                                       | (16.1604)            | (30.2050)           | (16.1129)           | (61.4301)             | (68,8571)     | (30,7006)          | (318,9860)          | (338,3546)           |
| Mean of FE (Obs.)                     | -0.0418 (1668)       | (30.2000)           | (10.112))           | (0111201)             | (00.0071)     | (30.7000)          | (510.9000)          | (550.5510)           |
| Spatial p                             | 0.5291*** (0.00      | 621)                |                     |                       |               |                    |                     |                      |
| $\sigma_{\epsilon}^2$                 | 0.0047*** (0.00      | 008)                |                     |                       |               |                    |                     |                      |
| R <sup>2</sup> (Log Pseudo-likelihood | l)                   |                     | 0.012               | 26 (2138.2706)        |               |                    |                     |                      |
| AIC (BIC)                             | -4321.8550 (-4       | 235.1450)           |                     |                       |               |                    |                     |                      |
| Stability (Identification) []         | Endogeneity]         |                     | Satisfied (         | Satisfied) [Satisfied | ]             |                    |                     |                      |
| (2)                                   |                      |                     |                     |                       |               |                    |                     |                      |
| Time-lagged χ                         | 0.3868***            |                     |                     |                       |               |                    |                     |                      |
|                                       | (0.0570)             |                     |                     |                       |               |                    |                     |                      |
| Spatial and time-lagged               | -0.0813              |                     |                     |                       |               |                    |                     |                      |
| φ                                     | (0.0524)             |                     |                     |                       |               |                    |                     |                      |
| VI1BusinInten                         | 0.0308               | 0.0193              | 0.0399              | 0.0528                | 0.0928        | 0.0672             | 0.1078              | 0.1750               |
|                                       | (0.0629)             | (0.0595)            | (0.0616)            | (0.0876)              | (0.1224)      | (0.1023)           | (0.1710)            | (0.2336)             |
| VI2ATourismFlow                       | 0.0273               | 0.0604              | 0.0331              | 0.1112                | 0.1443        | 0.0576             | 0.2144              | 0.2720               |
|                                       | (0.0753)             | (0.0843)            | (0.0722)            | (0.0992)              | (0.0956)      | (0.1177)           | (0.1859)            | (0.1885)             |
| Green Finance                         |                      |                     |                     |                       |               |                    | Volum               | e 5, Issue 1, 18–67. |

Volume 5, Issue 1, 18–67.

| VI4ForeignOpen                         | 0.0162                          | 0.0053                           | 0.0179*                           | 0.0182                             | 0.0361                             | 0.0301*                         | 0.0402                             | 0.0703                              |
|----------------------------------------|---------------------------------|----------------------------------|-----------------------------------|------------------------------------|------------------------------------|---------------------------------|------------------------------------|-------------------------------------|
| VI5IntConsump                          | 0.3782**                        | (0.0292)<br>-0.2760<br>(0.1852)  | 0.3555**                          | (0.0438)<br>-0.2474<br>(0.2453)    | (0.0471)<br>0.1081<br>(0.2082)     | 0.5776*                         | (0.0838)<br>-0.3831<br>(0.4624)    | (0.0952)<br>0.1944<br>(0.5684)      |
| VI3Mob                                 | (0.1814)<br>-0.1005<br>(0.0827) | (0.1852)<br>-0.1564<br>(0.1006)  | (0.1793)<br>-0.1143<br>(0.0826)   | (0.2433)<br>-0.2714*<br>(0.1403)   | (0.2982)<br>-0.3857**<br>(0.1762)  | (0.2934)<br>-0.1952<br>(0.1372) | (0.4024)<br>-0.5279*<br>(0.2780)   | (0.3084)<br>-0.7231**<br>(0.3463)   |
| VI6EldIPSS                             | (0.0827)<br>-3.4172<br>(4.7666) | (0.1000)<br>-10.9738<br>(7.4212) | (0.0820)<br>-4.5378<br>(4.5806)   | (0.1403)<br>-17.1021*<br>(10.0640) | (0.1703)<br>-21.6399**<br>(0.7628) | (0.1372)<br>-7.9295<br>(7.4518) | (0.2789)<br>-32.6562*<br>(10.0078) | (0.3403)<br>-40.5857**<br>(18.0745) |
| Mean of FE (Obs.)                      | (4.7000)                        | (7.4312)                         | (4.3800)                          | 4.7089 (1668)                      | (9.7028)                           | (7.4318)                        | (19.0078)                          | (18.9743)                           |
| Spatial p                              | 0.3345*** (0                    | 0.0573)                          |                                   |                                    |                                    |                                 |                                    |                                     |
| $\sigma_{\varepsilon}^2$               | 0.0103*** (0.0013)              |                                  |                                   |                                    |                                    |                                 |                                    |                                     |
| R <sup>2</sup> (Log Pseudo-likelihood) |                                 |                                  | 0.0096 (1487.7924)                |                                    |                                    |                                 |                                    |                                     |
| AIC (BIC)                              |                                 |                                  | -3090.2850 (-3003.5740)           |                                    |                                    |                                 |                                    |                                     |
| Stability (Identification)             | ) [Endogeneity]                 |                                  | Satisfied (Satisfied) [Satisfied] |                                    |                                    |                                 |                                    |                                     |

**Notes**: t-statistics in parenthesis and degrees of freedom in brackets. Symbols \*\*\*, \*\* and \* represent one, five, and ten percent significance levels. By definition, dynamic spatial panel data models only consider fixed effects. The regression includes robust standard errors estimations and robust variance estimations, which accurately take into account the cluster-correlated data by adjusting for within-cluster correlation.



© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

8