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A. Appendix: Special cases of the weighted paired difference approach

Equal weights in the basic approach. In this case, the variable of interest is the ordinary average of
the sample ∆1, . . . ,∆n, as reflected by the fact that then instead of (2.4a), it holds that

E[Xϑ] =
1
n

n∑
i=1

∆i − ϑ. (A.1)

In the same vein, the algorithms and formulae of Section 2.1 can be adapted to the equal weights case
by replacing all weights wi and w j with 1/n.

Weight-adjusted sample. In this case, the weights wi are accounted for by replacing the sample
∆1, . . . ,∆n with the sample ∆∗1, . . . ,∆

∗
n where ∆∗i is defined by

∆∗i = wi ∆i.

The adjusted sample ∆∗1, . . . ,∆
∗
n in turn is treated as in the equal weights case. Then, in particular, (2.3)

for the distribution of Xϑ reads

P[Xϑ = ∆∗i − ϑ] =
1
n
, i = 1, . . . , n.

If
∑n

i=1 wi ∆i , 0, it follows that

E[Xϑ] =
1
n

n∑
i=1

∆∗i − ϑ ,
n∑

i=1

wi ∆i − ϑ. (A.2)
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As a consequence of (A.2), the adaptation of the algorithms and formulae from Section (2.1) for the
weight-adjusted sample case would appear somewhat misleading if comparability in magnitude of the
values of the test statistic X̄ϑ to its values in the unequal weights case as discussed in Section 2.1 were intended.

A workaround for this problem is to adjust the sample not only for the weights but also for the
sample size, i.e. to define the adjusted sample ∆̃1, . . . , ∆̃n by

∆̃i = n wi ∆i. (A.3a)

Assuming equal weights now means P[Xϑ = ∆̃i − ϑ] = 1/n which implies

E[Xϑ] =
1
n

n∑
i=1

∆̃i − ϑ

=

n∑
i=1

wi ∆i − ϑ, (A.3b)

var[Xϑ] =
1
n

n∑
i=1

∆̃2
i −

1n
n∑

i=1

∆̃

2

= n
n∑

i=1

w2
i ∆

2
i −

 n∑
i=1

wi ∆i

2 . (A.3c)

Comparison with (2.4b) shows that the variances of Xϑ according to the weighting scheme (A.3a) and
the weighting scheme deployed in Section 2.1 differ by

n∑
i=1

(n wi − 1) wi ∆
2
i ,

which can be positive or negative. The algorithms and formulae from Section 2.1 can be applied to
the weight-adjusted sample case as specified by (A.3a) and P[Xϑ = ∆̃i − ϑ] = 1/n if the following two
modifications are taken into account in the given order:

• Replace the value of ∆i by the value of ∆̃i = n wi ∆i for i = 1, . . . , n.
• Replace all remaining appearances of the weights wi by 1/n.

Note that the weight-adjustment (A.3a) can also be deployed for samples with more special structure
like the ones considered in Section (2.3) and Appendix B below. There is no guarantee, however, that
adjustment (A.3a) would preserve the ‘values in the unit interval’ constraint of Section (2.3). There is
no such preservation issue with regard to Appendix B.

B. Appendix: Tests for non-negative variables

In contrast to LGD and CCF which by definition are variables with values in the unit interval, EAD
in principle may take any non-negative value. This requires some modifications in order to adapt the
approach from Section 2.3 to the assessment of EAD estimates.
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Starting point.

• A sample of paired observations (h1, η1), . . . , (hn, ηn), with predicted EADs 0 < ηi < ∞ and realised
exposures 0 ≤ hi < ∞.
• Weights 0 < wi < 1, i = 1, . . . , n, with

∑n
i=1 wi = 1,

• Weighted average observed EAD hw =
∑n

i=1 wi hi and weighted average EAD prediction ηw =∑n
i=1 wi ηi.

Interpretation in the context of EAD back-testing.

• A sample of n defaulted credit facilities / loans is analysed.
• The EAD ηi is an estimate of loan i’s exposure at the moment of the default, measured in currency

units.
• The realized exposure hi shows the loan i’s exposure at the time of default.
• The weight wi reflects the relative importance of observation i. In the case of direct EAD predictions,

one might choose wi according to (2.2a).
• Define ∆i = hi − ηi, i = 1, . . . , n. If |∆i| ≈ 0 then ηi is a good EAD prediction. If |∆i| is large then ηi

is a poor EAD prediction.

Goal. We want to use the observed weighted average difference / residual ∆w =
∑n

i=1 wi ∆i = hw − ηw

to assess the quality of the calibration of the model / approach for the ηi to predict the realised exposures
hi. Again we want to answer the following two questions:

• If ∆w < 0, how safe is the conclusion that the observed (realised) values are on weighted average
less than the predictions, i.e. the predictions are prudent / conservative?
• If ∆w > 0, how safe is the conclusion that the observed (realised) values are on weighted average

greater than the predictions, i.e. the predictions are aggressive?

The safety of such conclusions is measured by p-values which provide error probabilities for the
conclusions to be wrong. The lower the p-value, the more likely the conclusion is right.

In order to be able to examine the specific properties of the sample and ∆w with statistical methods,
we have to make the assumption that the sample was generated with some random mechanism. This
mechanism is described in the following modification of Assumption 2.4.

Assumption B.1. The sample ∆1, . . . ,∆n consists of independent realisations of a random variable Xϑ
with distribution given by

Xϑ = hI − Yϑ, (B.1a)

where I is a random variable with values in {1, . . . , n} and P[I = i] = wi, i = 1, . . . , n. Yϑ is a
gamma(αi, βi)-distributed random variable* conditional on I = i for i = 1, . . . , n. The parameters αi

and βi of the gamma-distribution depend on the unknown parameter 0 < ϑ < ∞ by

αi =
ϑi

v
, and

βi = v.
(B.1b)

*See Casella and Berger [2002, Section 3.3] for a definition of the gamma-distribution.
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In (B.1b), the constant 0 < v < ∞ is the same for all i. The ϑi are determined by

ϑi = ηi
ϑ

ηw
. (B.1c)

Note that Assumption B.1 describes a method for recalibration of the EAD estimates η1, . . . , ηn to
match targets ϑ with the weighted average of the ϑi. By definition of Yϑ, it holds that E[Yϑ | I = i] = ϑi.

The constant v specifies the variance of Yϑ conditional on I = i as multiple of its expected value ϑi,
i.e. it holds that

var[Yϑ | I = i] = vϑi, i = 1, . . . , n. (B.2)

The constant v must be pre-defined or separately estimated. We suggest estimating it from the sample
h1, . . . , hn as

v̂ =
∑n

i=1 wi h2
i − h2

w

hw
. (B.3)

Proposition B.2. For Xϑ as described in Assumption B.1, the expected value and the variance are given by

E[Xϑ] = hw − ϑ, and (B.4a)

var[Xϑ] =
n∑

i=1

wi (hi − ϑi)2 − (hw − ϑ)2 + vϑ. (B.4b)

Proof. For deriving the formula for var[Xϑ], make use of the well-known variance decomposition

var[Xϑ] = E
[
var[Xϑ | I]

]
+ var

[
E[Xϑ | I]

]
.

Like in (2.13b), the variance of Xϑ as shown in (B.4b) depends on the parameter ϑ and has an
additional component vϑ which reflects the potentially different variances of the exposures at default in
an inhomogeneous portfolio.

By Assumption B.1 and Proposition B.2, the questions on the safety of conclusions from the sign of
∆w again can be translated into hypotheses on the value of the parameter ϑ:

• If ∆w < 0, can we conclude that H0 : ϑ ≤ hw is false and H1 : ϑ > hw ⇔ E[Xϑ] < 0 is true?
• If ∆w > 0, can we conclude that H∗0 : ϑ ≥ hw is false and H∗1 : ϑ < hw ⇔ E[Xϑ] > 0 is true?

If we assume that the sample ∆1, . . . ,∆n was generated by independent realisations of Xϑ then the
distribution of the sample mean is different from the distribution of Xϑ, as shown in the following
corollary to Proposition B.2.

Corollary B.3. Let X1,ϑ, . . . , Xn,ϑ be independent and identically distributed copies of Xϑ as in Assump-
tion B.1 and define X̄ϑ = 1

n

∑n
i=1 Xi,ϑ. Then for the mean and variance of X̄ϑ, it holds that

E[X̄ϑ] = hw − ϑ. (B.5a)

var[X̄ϑ] =
1
n

 n∑
i=1

wi (hi − ϑi)2 − (hw − ϑ)2 + vϑ

 . (B.5b)

In the following, we use X̄ϑ as the test statistic and interpret ∆w = hw − ηw as its observed value.

Proposition B.4. In the setting of Assumption B.1 and Corollary B.3, ϑ ≤ ϑ̂ implies that

P[X̄ϑ ≤ x] ≤ P[X̄ϑ̂ ≤ x], for all x ∈ R.

Proof. Same as the proof of Proposition 2.7.
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Bootstrap test. Generate a Monte Carlo sample x̄1, . . . , x̄R from Xϑ with ϑ = hw as follows:

• For j = 1, . . . ,R: x̄ j is the equally weighted mean of n independent draws from the distribution of
Xϑ as given by Assumption B.1, with ϑ = hw.
• x̄1, . . . , x̄R are realisations of independent, identically distributed random variables,

Then a bootstrap p-value for the test of H0 : ϑ ≤ hw against H1 : ϑ > hw can be calculated as

p-value =
1 + #

{
i : i ∈ {1, . . . , n}, x̄i ≤ hw − ηw

}
R + 1

. (B.6a)

A bootstrap p-value for the test of H∗0 : ϑ ≥ hw against H∗1 : ϑ < hw is given by

p-value∗ =
1 + #

{
i : i ∈ {1, . . . , n}, x̄i ≥ hw − ηw

}
R + 1

. (B.6b)

Rationale. Same as the rationale for (2.16a) and (2.16b).

Normal approximate test. By Corollary B.3, we find that the distribution of X̄hw can be approximated
by a normal distribution with mean 0 and variance as shown on the right-hand side of (B.5b) with
ϑ = hw. With x = hw − ηw, one obtains for the approximate p-value of H0 : ϑ ≤ hw against H1 : ϑ > hw:

p-value = P[X̄hw ≤ x]

≈ Φ


√

n (hw − ηw)√∑n
i=1 wi (hi − ϑ̂i)2 + v hw

 , (B.7a)

with ϑ̂i = ηi
hw
ηw

as in Assumption B.1. The same reasoning gives for the normal approximate p-value of
H∗0 : ϑ ≥ hw against H∗1 : ϑ < hw:

p-value∗ ≈ 1 − Φ


√

n (hw − ηw)√∑n
i=1 wi (hi − ϑ̂i)2 + v hw

 . (B.7b)
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