

AIMS Allergy and Immunology, 5(1): 38–55. DOI: 10.3934/Allergy.2021004 Received: 22 November 2020 Accepted: 20 January 2021 Published: 25 January 2021

http://www.aimspress.com/journal/Allergy

Review

Systematic review on the clinical presentation and management of the COVID-19 associated multisystem inflammatory syndrome in

```
children (MIS-C)
```

Marah Shaikh Yousef, Nur Syazana Idris, Charles Yap, Abdulaziz Abdullah Alsubaie and Pramath Kakodkar*

School of Medicine, National University of Ireland Galway, Galway City, Republic of Ireland

* Correspondence: Email: P.Kakodkar1@nuigalway.ie; Tel: +353852806241.

Supplementary

Table S1. Summary of the different countries at which patients presented (n = 646).

Country	Frequency % (n)	References
USA	330 (51.1)	[6,11,13,14,20–22,24,27,29,30,35,38]
Turkey	1 (0.15)	[36]
India	26 (4.02)	[4,37,15]
Saudi Arabia	1 (0.15)	[23]
Poland	1 (0.15)	[25]
Spain	31 (4.8)	[39]
UK	138 (21.4)	[12,15,18,40]
Iran	1 (0.15)	[32]
Italy	11 (1.7)	[18,26,33]
Algeria	1 (0.15)	[28]
Brazil	1 (0.15)	[34]
Thailand and Netherlands	21 (3.25)	[16]
France and Switzerland	56 (8.68)	[30,31]
Chile	27 (4.18)	[41]
Sum	646 (100)	-

Total antibiotics used	Frequency	Percentage %	References
1	21	12 (n = 21/169)	[21,36,31]
2	16	9 (n = $16/169$)	[20,21-24,26,28,32,38]
3	4	2(n = 4/169)	[19,21]
4	0	0	-
5	1	0.6 (n = 1/169)	[35]
6	1	0.6 (n = 1/169)	[37]
Not specified	126	75 (n = 126/169)	[11,13,29,34,41]
Total	169	-	-

Table S2. Total number of antibiotics used in patients ($n^* = 169$).

(n): Changes indicate the prevalence in those who reported the specific findings.

First-line antibiotics	Frequency	Percentage %	References
Azithromycin	4	2(n = 4/169)	[26,28,35,36]
Cephalosporins	27	16 (n = 27/169)	[19,21,24,31]
• 1 st generation: cefazoline	1	4(n = 1/27)	[21]
• 3 rd generation: ceftriaxone	20	74 (n = $20/27$)	[21,24,31]
• 4 th generation: cefepime	5	18 (n = 5/27)	[21]
• 5 th generation: ceftaroline	1	4(n = 1/27)	[19]
Ciprofloxacin	1	0.6 (n = 1/169)	[23]
Clindamycin	2	1(n = 2/169)	[21]
Linezolid	3	2(n = 3/169)	[22]
Meropenem	2	1(n = 2/169)	[32]
Metronidazole	1	0.6 (n = 1/169)	[20]
Piperacillin/tazobactam	1	0.6 (n = 1/169)	[37]
Vancomycin	2	1(n = 2/169)	[21,38]
Not specified	126	75 (n = 126/169)	[11,13,29,34,41]
Total	43	-	-

Table S3. Primary choice of antibiotics used $(n^* = 43)$.

(n): Changes indicate the prevalence in those who reported the specific findings.

Second-line antibiotics	Frequency $(n = 22)$	Percentage %	References
Cephalosporins	4	2(n = 4/169)	[21,22,38]
• 3 rd generation: ceftriaxone	3	75(n = 3/4)	[22,38]
• 4 th generation: cefepime	1	25 (n = $1/4$)	[21]
Ciprofloxacin	1	0.6 (n = 1/169)	[20]
Clindamycin	1	0.6 (n = 1/169)	[19]
Doxycycline	2	1(n = 2/169)	[26,37]
Levofloxacin	1	0.6 (n = 1/169)	[35]
Linezolid	3	2(n = 3/169)	[21]
Meropenem	2	1(n = 2/169)	[21,22]
Metronidazole	3	2(n = 3/169)	[21,23,28]
Penicillin G	1	0.6 (n = 1/169)	[24]
Vancomycin	4	2 (n = 4/169)	[21,32]
Not specified	147	87 (n = 147/169)	[11,13,29,34,41]
Total	22	-	-

Table S4. Secondary choice of antibiotics used $(n^* = 22)$.

(n): Changes indicate the prevalence in those who reported the specific findings.

Third-line antibiotics	Frequency $(n = 6)$	Percentage % (n)	References
Linezolid	2	1 (n = 2/169)	[21,35]
Meropenem	2	1 (n = 2/169)	[22,37]
Metronidazole	1	0.6 (n = 1/169)	[21]
Piperacillin/tazobactam	1	0.6 (n = 1/169)	[19]
Not specified	163	96 (n = 163/169)	[11,13,29,34,41]
Total	6	-	-

Table S5. Tertiary choice of antibiotics used $(n^* = 6)$.

*(n): Changes indicate the prevalence in those who reported the specific findings.

Treatments	LOS in days:	Outcomes	Conclusion & caveats	References
	$Mean \pm SD$			
Antibiotic alone $(n = 2)$	3	100%	Lowest LOS with best outcome. Low patient	[23,36]
		discharged	numbers to make any conclusive statement.	
Enoxaparin alone $(n = 3)$	5 ± 1	100%	Low LOS with best outcome. Low patient	[30]
		discharged	numbers to make any conclusive statement.	
Aspirin alone $(n = 1)$	N/A	100%	No LOS Data available	[27]
		discharged		
Aspirin and (antibiotic or	6 ± 1	100%	Moderate LOS with good outcome. Low	[30,37]
enoxaparin) $(n = 5)$		discharged	patient numbers to make any conclusive	
			statement.	
Triple therapy: aspirin and	9 ± 1	100%	Highest LOS with good outcome. Low patient	[21]
antibiotics and enoxaparin		discharged	numbers to make any conclusive statement.	
(n = 2)				
Antibiotics and	8 ± 3	100%	High LOS with good outcome. Low patient	[19,21,22]
enoxaparin (n = 8)		discharged	numbers to make any conclusive statement.	
Other: inotropes,	N/A	100%	No LOS data was available.	[15]
remdesivir, protease		discharged		
inhibitors, HCQ $(n = 1)$				

Table S6. Outcomes of adjunct medications in the biologics and immunoglobulin therapy treatment group ($n^* = 22$).

(n): Changes indicate the prevalence in those who reported the specific findings.

© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)