Public Health

Research article

Infection spread simulation technology in a mixed state of multi variant viruses

Makoto Koizumi ${ }^{1, *}$, Motoaki Utamura ${ }^{2}$ and Seiichi Kirikami ${ }^{3}$

${ }^{1}$ PhD, Former researcher of Hitachi Ltd., Hitachi City, Ibaraki Prefecture, Japan
${ }^{2}$ PhD, PE, Former professor, Tokyo Institute of Technology, Tokyo, Japan
${ }^{3}$ Scholar, Former engineer of Hitachi Ltd., Hitachi City, Ibaraki Prefecture, Japan

* Correspondence: Email: koizumi@theia.con.ne.jp.

Appendix A

Calculation of the first approximation of M and α
In ATLM, the rate of infections (daily new cases) $\frac{d x(t)}{d t}$ is given by the following equation with the collective population M and the transmission rate α.

$$
\begin{equation*}
\frac{d x(t)}{d t}=\alpha\{x(t)-x(t-T) u(t-T)\}\left(1-\frac{x(t)}{M}\right) \tag{A-1}
\end{equation*}
$$

here, $x(t)$: cumulative infections, T : delay time from infection to quarantine, u : the step function.
Since daily new cases varies significantly, integration is used to smooth them.
The intervals $\left[t_{1}, t_{2}\right],\left[t_{3}, t_{4}\right]\left(0<t_{1}<t_{2}<t_{3}<t_{4}\right)$ are used as those of interest.
The following equation is obtained from the integration of (A-1) in the interval $\left[t_{1}, t_{2}\right]$.

$$
\int_{t_{1}}^{t_{2}} \frac{d x(t)}{d t} d t=\alpha\left\{\int_{t_{1}}^{t_{2}}(x(t)-x(t-T)) d t-\frac{\int_{t_{1}}^{t_{2}}(x(t)-x(t-T)) x(t) d t}{M}\right\} \quad(\mathrm{A}-2)
$$

Normally, $T<t_{1}$. For this reason, we set the step function $\mathrm{u}=1$.
(A-2) is modified to obtain (A-3).

$$
\begin{equation*}
\frac{\int_{t_{1}}^{t_{2}}(x(t)-x(t-T)) x(t) d t}{M \int_{t_{1}}^{t_{2}}(x(t)-x(t-T)) d t}+\frac{\int_{t_{1}}^{t_{2}} \frac{d x(t)}{d t} d t}{\alpha \int_{t_{1}}^{t_{2}}(x(t)-x(t-T)) d t}=1 \tag{A-3}
\end{equation*}
$$

Similarly, (A-4) is obtained in the interval $\left[t_{3}, t_{4}\right]$.

$$
\begin{equation*}
\frac{\int_{t_{3}}^{t_{4}}(x(t)-x(t-T)) x(t) d t}{M \int_{t_{3}}^{t_{4}}(x(t)-x(t-T)) d t}+\frac{\int_{t_{3}}^{t_{4}} \frac{d x(t)}{d t} d t}{\alpha \int_{t_{3}}^{t_{4}}(x(t)-x(t-T)) d t}=1 \tag{A-4}
\end{equation*}
$$

(A-3) and (A-4) are linear equations of $\frac{1}{M} \operatorname{and} \frac{1}{\alpha}$. Then M and α are calculated.
Usually, the following inequality holds in the range of monotonously increasing $\frac{d x(t)}{d t}$.

$$
\frac{\int_{t_{1}}^{t_{2}}(x(t)-x(t-T)) x(t) d t}{\int_{t_{1}}^{t_{2}}(x(t)-x(t-T)) d t}<\frac{\int_{t_{3}}^{t_{4}}(x(t)-x(t-T)) x(t) d t}{\int_{t_{3}}^{t_{4}}(x(t)-x(t-T)) d t}
$$

The condition (A-5) is sufficient for M and α to be positive.

$$
\begin{equation*}
\frac{\int_{t_{1}}^{t_{2}}(x(t)-x(t-T)) d t}{\int_{t_{1}}^{t_{2}} \frac{d x(t)}{d t} d t}<\frac{\int_{t_{3}}^{t_{4}}(x(t)-x(t-T)) d t}{\int_{t_{3}}^{t_{4}} \frac{d x(t)}{d t} d t} \tag{A-5}
\end{equation*}
$$

The case of Tokyo.
The source is from the following.
Updates on COVID-19 in Tokyo. Available from: https://stopcovid19.metro.tokyo.lg.jp/en/.
The intervals were 2021 3/22-4/4 (14 days) and 4/5-4/18 (14 days) before the state of emergency. The delay time from infection to quarantine was $\mathrm{T}=14$ days. Therefore, the measured number of daily new cases $\frac{d x(t)}{d t}$ on the day t was used as the number of daily new ones $\mathrm{T}=14$ days ago.

The cumulative infections $x(t)$ were accumulated from the minimum number of daily new cases on February 15th.

$$
\text { Setting } \frac{1}{M}->x, \frac{1}{\alpha}->y \text {, }
$$

we obtained the following two linear equations.

$$
\frac{x}{0.00004129}+\frac{y}{11.729}=1
$$

$$
\frac{x}{0.00006737}+\frac{y}{11.416}=1
$$

from these equations, $\mathrm{M}=3.66013^{*} 10^{\wedge} 5$ and $\alpha=0.0913$ were obtained as the first approximations.
Integration was calculated with the trapezoidal formula. It was also used for the number of daily new cases $\frac{d x(t)}{d t}$. Therefore, numerically,

$$
\int_{t_{1}}^{t_{2}} \frac{d x(t)}{d t} d t \neq x\left(t_{2}\right)-x\left(t_{1}\right)
$$

In the above, the calculation of the first approximations of M and α is shown by taking the case of Tokyo. These must be so tuned that they are consistent with the other measurements.

AIMS Press
© 2022 the Author(s), licensee AIMS Press. This is an open access
article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

