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Appendix 1 (All Algorithm)

Algorithm 1 SmoteR(D,tE,o0.u,k)

1. Initialize empty sets:
o rareHD to store instances with high relevance of heart disease (¢(y) >tE) andy = 1
o rareNHD to store instances with high relevance of no heart disease (¢(y) >tE) and y =
0
o newCasesHD to store synthetic cases for rareHD
o newCasesNHD to store synthetic cases for rareNHD o newCases as the
concatenation of newCasesHD and newCasesNHD o normCases as the set for under-
sampling
2. For each instance (x, y) in D:



o Ife(y)>tEandy=1, add (x, y) to rareHD o If p(y) >tE and y = 0, add (x, y) to
rareNHD
3. Generate synthetic cases for rareHD: 0 newCasesHD = genSynthCases(rareHD, %o, k)
4. Generate synthetic cases for rareNHD:
o newCasesNHD = genSynthCases(rareNHD, %o, k)
5. Concatenate newCasesHD and newCasesNHD: o newCases = newCasesHD newCasesNHD
6. Determine the number of cases for under-sampling:
o nrNorm = %u of [newCases|
7. Randomly select cases from D{rareHD rareNHD} for under-sampling:
o normCases = random sample of nrNorm cases from D {rareHD rareNHD}
8. Return the concatenated synthetic and under-sampled cases:
o Return newCases normCases

end

Algorithm 2 for XGB
1. Import the essential libraries:
o pandas as pd o numpy asnp o xgboost as xgb
o train_test split from sklearn.model selection o  accuracy score from

sklearn.metrics
2. Load the heart disease dataset into a pandas DataFrame.
3. Pre-process the data:

o Perform data cleaning and handle missing values. o Conduct feature selection based
on domain knowledge or statistical techniques.

o Normalize or standardize the features if necessary. o Divided the data into training
with testing sets using train_test_split() function, considering stratification if needed.

4. Define the XGBoost model:

o Set the hyperparameters for the XGBoost model, such as the number of trees, learning
rate, and maximum depth.

o Optionally, perform cross-validation or grid search for hyperparameter tuning.

5. Train the model: o Fit the XGBoost model using the training data.
6. Evaluate the model:

o Make predictions on the testing data using the trained model. o Compute
evaluation metrics specific to heart disease prediction, such as accuracy, precision,
recall, and Fl-score. o Analyze the performance of the model and consider any issues,
such as overfitting or underfitting.

7. Interpret the results:
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o Investigate the importance of features in predicting heart disease. o Identify any
patterns or relationships between features and the target variable.

o Consider the impact of individual features on the model’s predictions.

8. [Iterate and refine:

o Based on the results, iterate and refine the model by adjusting hyperparameters,
modifying feature engineering techniques, or exploring different algorithms.

o Consider additional techniques like ensemble methods or addressing class imbalance if
necessary.

end

Algorithm 3 for ET

1. Import the necessary libraries:

o pandas as pd o numpy as np

o ExtraTreesClassifier starting sklearn.ensemble o train_test_split after
sklearn.model selection o accuracy_ score, confusion matrix from sklearn.metrics

2. Load the heart disease dataset into a pandas DataFrame:

o data=pd.read csv(‘'heart disease data.csv')

3. Pre-process the data:

o Separate the features (X) from the target variable (y). o~ Splitting  data’s  into
training with testing sets use train test split() function, considering stratification if
needed.

4. Define the Extra Trees model:
o Initialize the ExtraTreesClassifier model.
5. Train the model: o Fit the Extra Trees model using the training data.
6. Make predictions: o Generate predictions for the testing data using the trained model.
7. Evaluate the model:
o Compute the accurate model by comparing predicted labels with the actual labels.
o Generate the confusion matrix to assess the outcome of the model.
8. Print the accuracy and confusion matrix:
o Print the accuracy score.
o Print the confusion matrix.

End

AIMS Medical Science Volume 11, Issue 2, 58-71.



Algorithm 4 for RF
Import the necessary libraries:
o pandas as pd o numpy as np
o RandomForestClassifier after sklearn.ensemble o train test split after

sklearn.model selection o accuracy_ score, confusion matrix from sklearn.metrics
Load the heart disease dataset into a pandas DataFrame:
o data=pd.read csv(‘'heart disease data.csv')
Preprocess the data:

o Separate the features (X) from the target variable (y). o  Divide the data into
training with testing sets use train_test split() function, considering stratification if
needed.

Define the Random Forest model:
o Initialize the RandomForestClassifier model.
Train the model: o Fit the Random Forest model using the training data.
Make predictions: o Generate predictions for the testing data using the trained model.
Evaluate the model:

o Compute the accurate model through comparing the predicted labels with the actual
labels.

o Generate the confusion matrix to assess the performance of the model.

Print the accuracy and confusion matrix:

o Print the accuracy score.

o Print the confusion matrix.

End

Algorithm 5 for AdaBoost

Input:
o Training input data: (x1, y1), (x2, y2), ..., (xn, yn), where xi represents the features
of the ith patient and yi is the corresponding label (+1 for heart disease present, -1
for heart disease not present). o Number of iterations: T
Output:
o Boosted hypothesis for heart disease prediction: H(x)
Step 1: Initialize weights for training samples o Set D1(n) = 1/N for all n, where N is the
total number of training samples.
Step 2: Iterate T timeso  Fort=1to T:
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= Train a weak learner ht(x) using the weighted training data.
= ht(x) predicts the presence or absence of heart disease (+1 or -1) based on the
patient's features.
5. Step 3: Calculate weighted error rate and weight of the weak learner o Compute the
weighted error rate et using the equation: et = X[n=1 to N] Dt(n)
* 1{ht(xn) # yn} / Z[n=1 to N] Dt(n) o ~ Calculate the weight at for the weak
learner using the equation: at = 0.5 * In((1 - €t) / €t)
6. Step 4: Update the weights of the training samples o Forn=1 to N:
If ht(xn) = yn, then: Dt+1(n) = Dt(n) * exp(-at)
If ht(xn) # yn, then: Dt+1(n) = Dt(n) * exp(at)

7. Step 5: Normalize the updated weights o Normalize the updated weights Dt+1(n) by
dividing them by the sum of all updated weights: Dt+1(n) = Dt+1(n) / £[m=1 to N] Dt+1(m)

8. Step 6: Repeat steps 2-5 for T iterations.

9. Step 7: Combine weak classifiers to create the boosted hypothesiso  For a new input
sample x:

Calculate the boosted hypothesis H(x) as: H(x) = sign (X [t=1 to T] atht(x))

end
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Appendix 2 (Validation)

Random Forest Results

Accuracy [ with RF]: 86.85714285714286 %
Recall [ with RF]: 75.36231884857972 %
precision [ with RF]: 89.65517241379311 %
MCC [ with RF]: ©.7236281835%98587
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