

Research article

Enhancing cardiovascular disease prediction: A hybrid machine learning approach integrating oversampling and adaptive boosting techniques

Segun Akinola¹, Reddy Leelakrishna² and Vijayakumar Varadarajan^{3,*}

¹ Johannesburg Business School, University of Johannesburg, ZA-2006, South Africa

² Department of Physics, University of Johannesburg, ZA-2006, South Africa

³ Ajeenkyा DY Patil University, Pune, Maharashtra, India

*** Correspondence:** Email: dean.international@adypu.edu.in.

Appendix 1 (All Algorithm)

Algorithm 1 SmoteR(D,tE,o.u,k)

1. Initialize empty sets:
 - o rareHD to store instances with high relevance of heart disease ($\phi(y) > tE$) and $y = 1$
 - o rareNHD to store instances with high relevance of no heart disease ($\phi(y) > tE$) and $y = 0$
 - o newCasesHD to store synthetic cases for rareHD
 - o newCasesNHD to store synthetic cases for rareNHD o newCases as the concatenation of newCasesHD and newCasesNHD o normCases as the set for undersampling
2. For each instance (x, y) in D:

- o If $\phi(y) > tE$ and $y = 1$, add (x, y) to rareHD o If $\phi(y) > tE$ and $y = 0$, add (x, y) to rareNHD

3. Generate synthetic cases for rareHD: o newCasesHD = genSynthCases(rareHD, %o, k)
4. Generate synthetic cases for rareNHD:
 - o newCasesNHD = genSynthCases(rareNHD, %o, k)
5. Concatenate newCasesHD and newCasesNHD: o newCases = newCasesHD newCasesNHD
6. Determine the number of cases for under-sampling:
 - o nrNorm = %u of |newCases|
7. Randomly select cases from $D\{\text{rareHD} \text{ rareNHD}\}$ for under-sampling:
 - o normCases = random sample of nrNorm cases from $D\{\text{rareHD} \text{ rareNHD}\}$
8. Return the concatenated synthetic and under-sampled cases:
 - o Return newCases normCases

end

Algorithm 2 for XGB

1. Import the essential libraries:
 - o pandas as pd o numpy as np o xgboost as xgb
 - o train_test_split from sklearn.model_selection o accuracy_score from sklearn.metrics
2. Load the heart disease dataset into a pandas DataFrame.
3. Pre-process the data:
 - o Perform data cleaning and handle missing values. o Conduct feature selection based on domain knowledge or statistical techniques.
 - o Normalize or standardize the features if necessary. o Divided the data into training with testing sets using train_test_split() function, considering stratification if needed.
4. Define the XGBoost model:
 - o Set the hyperparameters for the XGBoost model, such as the number of trees, learning rate, and maximum depth.
 - o Optionally, perform cross-validation or grid search for hyperparameter tuning.
5. Train the model: o Fit the XGBoost model using the training data.
6. Evaluate the model:
 - o Make predictions on the testing data using the trained model. o Compute evaluation metrics specific to heart disease prediction, such as accuracy, precision, recall, and F1-score. o Analyze the performance of the model and consider any issues, such as overfitting or underfitting.
7. Interpret the results:

- o Investigate the importance of features in predicting heart disease. o Identify any patterns or relationships between features and the target variable.
- o Consider the impact of individual features on the model's predictions.

8. Iterate and refine:

- o Based on the results, iterate and refine the model by adjusting hyperparameters, modifying feature engineering techniques, or exploring different algorithms.
- o Consider additional techniques like ensemble methods or addressing class imbalance if necessary.

end

Algorithm 3 for ET

1. Import the necessary libraries:
 - o pandas as pd o numpy as np
 - o ExtraTreesClassifier starting sklearn.ensemble o train_test_split after sklearn.model_selection o accuracy_score, confusion_matrix from sklearn.metrics
2. Load the heart disease dataset into a pandas DataFrame:
 - o data = pd.read_csv('heart_disease_data.csv')
3. Pre-process the data:
 - o Separate the features (X) from the target variable (y). o Splitting data's into training with testing sets use train_test_split() function, considering stratification if needed.
4. Define the Extra Trees model:
 - o Initialize the ExtraTreesClassifier model.
5. Train the model: o Fit the Extra Trees model using the training data.
6. Make predictions: o Generate predictions for the testing data using the trained model.
7. Evaluate the model:
 - o Compute the accurate model by comparing predicted labels with the actual labels.
 - o Generate the confusion matrix to assess the outcome of the model.
8. Print the accuracy and confusion matrix:
 - o Print the accuracy score.
 - o Print the confusion matrix.

End

Algorithm 4 for RF

1. Import the necessary libraries:
 - o pandas as pd o numpy as np
 - o RandomForestClassifier after sklearn.ensemble o train_test_split after sklearn.model_selection o accuracy_score, confusion_matrix from sklearn.metrics
2. Load the heart disease dataset into a pandas DataFrame:
 - o data = pd.read_csv('heart_disease_data.csv')
3. Preprocess the data:
 - o Separate the features (X) from the target variable (y).
 - o Divide the data into training with testing sets use train_test_split() function, considering stratification if needed.
4. Define the Random Forest model:
 - o Initialize the RandomForestClassifier model.
5. Train the model:
 - o Fit the Random Forest model using the training data.
6. Make predictions:
 - o Generate predictions for the testing data using the trained model.
7. Evaluate the model:
 - o Compute the accurate model through comparing the predicted labels with the actual labels.
 - o Generate the confusion matrix to assess the performance of the model.
8. Print the accuracy and confusion matrix:
 - o Print the accuracy score.
 - o Print the confusion matrix.

End

Algorithm 5 for AdaBoost

1. Input:
 - o Training input data: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$, where x_i represents the features of the i th patient and y_i is the corresponding label (+1 for heart disease present, -1 for heart disease not present).
 - o Number of iterations: T
2. Output:
 - o Boosted hypothesis for heart disease prediction: $H(x)$
3. Step 1: Initialize weights for training samples
 - o Set $D_1(n) = 1/N$ for all n , where N is the total number of training samples.
4. Step 2: Iterate T times
 - o For $t = 1$ to T :

- Train a weak learner $h_t(x)$ using the weighted training data.
- $h_t(x)$ predicts the presence or absence of heart disease (+1 or -1) based on the patient's features.

5. Step 3: Calculate weighted error rate and weight of the weak learner o Compute the weighted error rate ϵ_t using the equation: $\epsilon_t = \sum_{n=1}^N D_t(n) \cdot 1\{h_t(x_n) \neq y_n\} / \sum_{n=1}^N D_t(n)$ o Calculate the weight α_t for the weak learner using the equation: $\alpha_t = 0.5 * \ln((1 - \epsilon_t) / \epsilon_t)$

6. Step 4: Update the weights of the training samples o For $n = 1$ to N :

If $h_t(x_n) = y_n$, then: $D_{t+1}(n) = D_t(n) * \exp(-\alpha_t)$

If $h_t(x_n) \neq y_n$, then: $D_{t+1}(n) = D_t(n) * \exp(\alpha_t)$

7. Step 5: Normalize the updated weights o Normalize the updated weights $D_{t+1}(n)$ by dividing them by the sum of all updated weights: $D_{t+1}(n) = D_{t+1}(n) / \sum_{m=1}^N D_{t+1}(m)$

8. Step 6: Repeat steps 2-5 for T iterations.

9. Step 7: Combine weak classifiers to create the boosted hypothesis o For a new input sample x :

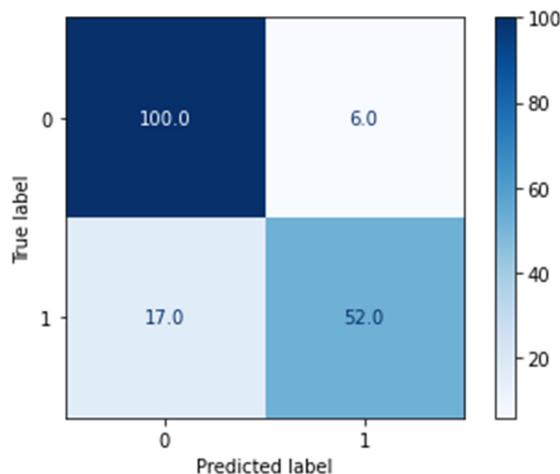
Calculate the boosted hypothesis $H(x)$ as: $H(x) = \text{sign}(\sum_{t=1}^T \alpha_t h_t(x))$

end

Appendix 2 (Validation)

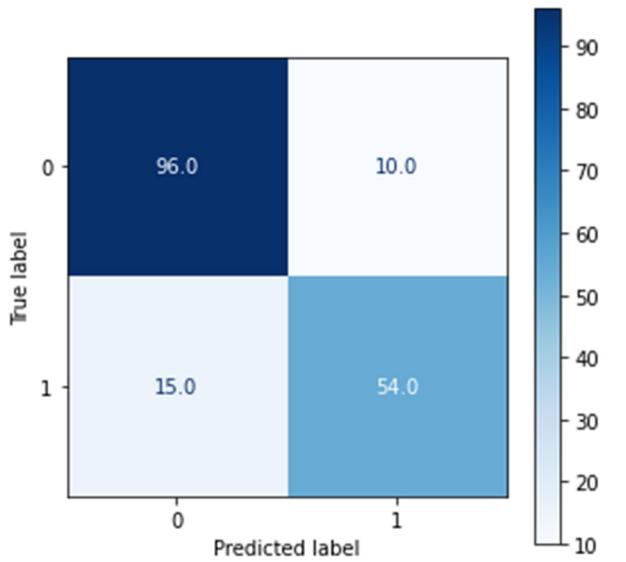
Random Forest Results

Accuracy [with RF]: 86.85714285714286 %
Recall [with RF]: 75.36231884057972 %
precision [with RF]: 89.65517241379311 %
MCC [with RF]: 0.723628103990507

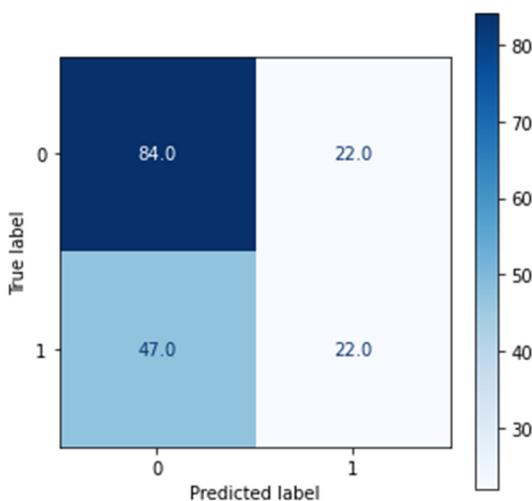


AdaBoost Random Forest Results

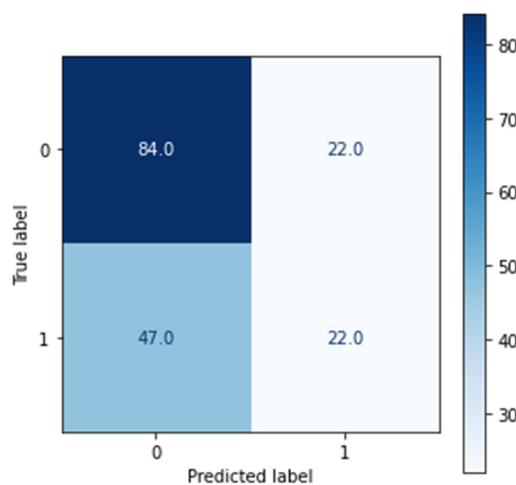
Accuracy [AdaBoost with RF]: 85.71428571428571 %
Recall [AdaBoost with RF]: 78.26086956521739 %
precision [AdaBoost with RF]: 84.375 %
MCC [AdaBoost with RF]: 0.6983678802480235



```
=====
Logistic Regression Results
=====
Accuracy [ with LR]: 60.57142857142858 %
Recall [ with LR]: 31.88405797101449 %
precision [ with LR]: 50.0 %
MCC [ with LR]: 0.1253674928685844
```



```
=====
AdaBoost LR Results
=====
Accuracy [AdaBoost with LogisticRegression]: 60.57142857142858 %
Recall [AdaBoost with LogisticRegression]: 31.88405797101449 %
precision [AdaBoost with LogisticRegression]: 50.0 %
=====
MCC [ AdaBoost with LR]: 0.1253674928685844
```

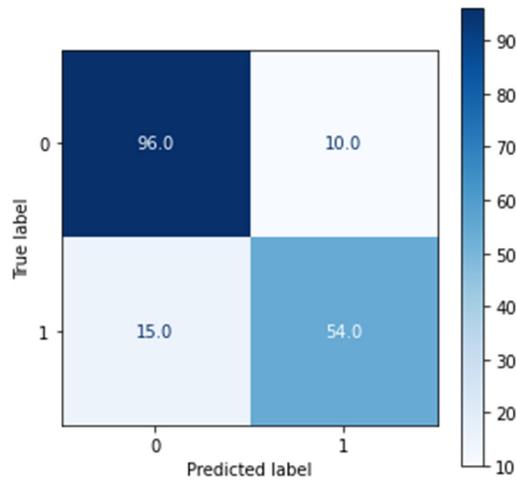


=====

Extra Tree Results

=====

Accuracy [with ET]: 85.71428571428571 %
 Recall [with ET]: 78.26086956521739 %
 precision [with ET]: 84.375 %
 MCC [with ET]: 0.6983678802480235

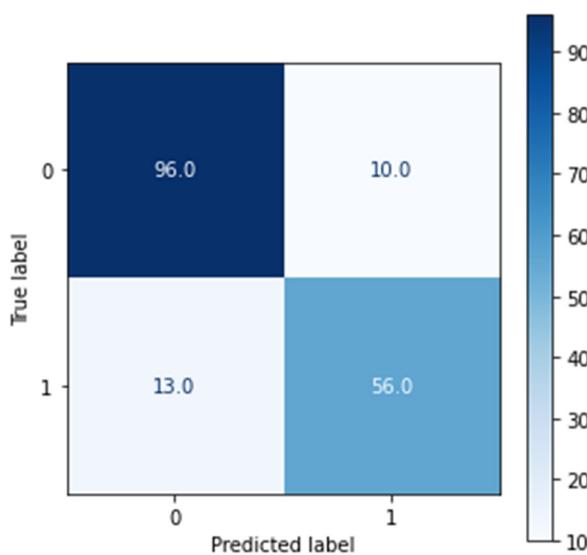


=====

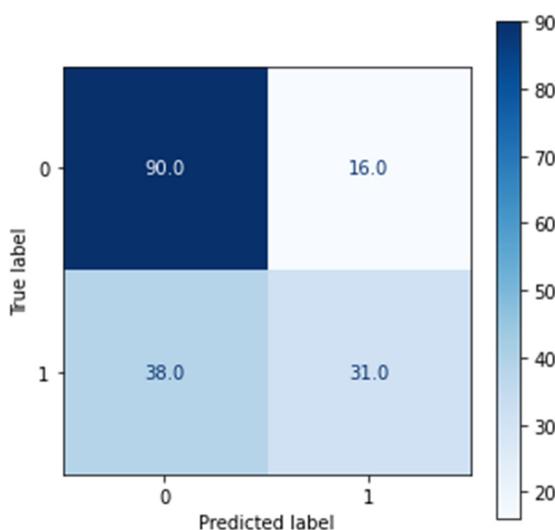
Extra TreeForest Results

=====

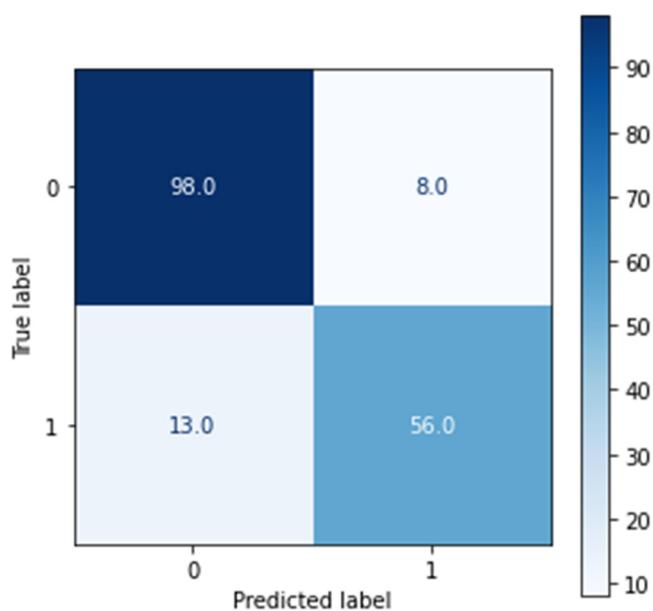
Accuracy [AdaBoost with ET]: 86.85714285714286 %
 Recall [AdaBoost with ET]: 81.15942028985508 %
 precision [AdaBoost with ET]: 84.84848484848484 %
 MCC [AdaBoost with ET]: 0.7232119465299363



```
=====
XGB Results
=====
Accuracy [ with ET]: 69.14285714285714 %
Recall [ with ET]: 44.927536231884055 %
precision [ with ET]: 65.95744680851064 %
MCC [ with ET]: 0.328945049232401
```



```
=====
XGB TreeForest Results
=====
Accuracy [AdaBoost with XGB]: 88.0 %
Recall [AdaBoost with XGB]: 81.15942028985508 %
precision [AdaBoost with XGB]: 87.5 %
MCC [ AdaBoost with XGB]: 0.7469234539641157
```



AIMS Press

© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by/4.0>)