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Supplementary 

S1. The homogenized composite materials theory, (Τheory and experimental evidence) 

Proceeding to the formulation of the composite particulate materials, a spherical particulate, and 
a spherical composite material are considered, see Figure 12. 

Following Spathis et al [24] the homogenized Young’s modulus Ec and Poisson’s ratio νc depend 
upon the various characteristics of the materials. In fact, 

Ec = Ec (Ef, νf, Em, νm, λ, Uf, Um ) (S1) 

νc = νc ( Ef, νf, Em, νm, Uf, Um) (S2) 

Uf = rf
3 / rm

3 (S3) 

Um = ( rm
3–rf

3 ) /rm
3 (S4) 

In the above relations, Ef, νf, Uf, rf and Em, νm, Um, rm are the Elastic modulus, Poisson ratio, 
volume fraction, and radius of the fillers and the matrix respectively, whereas λ denotes the relationship 
between the applied pressure P1 to the composite with the common stress P0 at the inclusion-matrix 
interface, as λ = P0 / P1. By modifying the model used in Ref. [24] so that be applied for the two-phase 
composite, the Elastic modulus, Ec, can be obtained. Concerning Poisson’s ratio of the composite, the 
difference in the values of the Poisson ratios of the inclusions and the matrix is very small. Thus, the 
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Poisson ratio of the composite, νc, may be evaluated with accuracy by the law of mixtures (or the 
inverse law of mixtures) as follows: 

νc = νf Uf + νmUm (S5) 

 

(S6) 

 
(S7) 

where λ is obtained by Eq S8: 

 
(S8) 

Similarly, from the modified model of Ref. [24], the radial stresses and displacements are 
obtained as Eqs S9–S12: 

σr,f = −P0 = −λP1 (S9) 

 
(S10) 

 
(S11) 

 

(S12) 

S2. Material and experimental work 

The properties of the constituent materials are presented in Table S1. The matrix material that 
was used was diglycidyl ether of bisphenol-A resin, with the commercial designation Epikote 828 by 
Shell Co. as prepolymer, with an epoxy equivalent 185–192, molecular weight between 370 and 384 
and viscosity of 15000 cP at 25 ℃. As a curing agent, 8% triethylenetetramine hardener per weight of 
the epoxy resin was employed. Next, the mixture after being stirred thoroughly was put in a vacuum 
chamber for about 15 min for degassing. Then, it was cast into a rectangular Plexiglas mould suitable 
and coated with silicon oil to prevent adhesion of the mixture to it. The latter was then sealed so that 
it was possible to rotate it to prevent the aluminum powder from settling and to obtain as uniform a 
final product as possible. As the pot life of the matrix material is of the order of 20 ℃ at ambient 
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temperature, which was slightly decreased by the presence of the particles, it only took 20–25 min for 
the mixture to gel, after which no more rotating was necessary. The moulding was removed 24 h later 
and the casting was subjected to thermal processing, consisting of a temperature rise at 5 ℃/h 
maintained constant at 100 ℃ and finally dropped to ambient at 1 ℃/h. In this manner, complete 
polymerization of the matrix material was obtained and consequently, the properties of the final 
product did not exhibit any storage dependence. Five filler volume fractions (0.05; 0.10; 0.15; 0.20; 
0.30) were used. The test pieces were machined from each casting. The composite density was 
measured for each volume fraction. The following values concerning the aluminum particles were 
provided by the manufacturers.  

The aluminium powder of a single particle size containing 0.2% Al2O3 in the form of spheroidal 
had the following size (diameter) distribution: 0.16 mm, traces; +0.125 mm, 0.5%, 0.04 mm, 10–12% 
under 0.04 mm 80–90% were added. Thus, the radius rf is taken as rf = 20 μ = 0.020 mm. 

Table S1. Properties of constituent materials. 

Property Aluminum  Epoxy resin 

Elastic Modulus [E] (N/m2) 70 × 109 3.5 × 109 

Bulk modulus [K] (N/m2) 73 × 109 4.2 × 109 

Poisson ratio [ν] 0.34 0.36 

Density [ρ] (kg/m3) 2700 1190 

Thermal expansion coefficient [α] (C−1) 22.4 × 10−6 60.26 × 10−6 

To measure the elastic modulus of the particulate composite, tensile experiments were carried out 
with an Instron-type testing machine at room temperature. Four specimens of each material were tested 
at a rate of extension of 1 mm/min. The specimens used were of dogbone type with dimensions at the 
measuring region (50 × 20 × 9) × 10−3 m and of a total length 150 × 10−3 m. To obtain the strains for 
each material, strain gauges (KYOWA type, gauges factor k = 1.99) were located on each specimen to 
measure the strains. Each value on the diagram is the mean value of the obtained results. 

S3. Results  

Figure 12 illustrates the variation of composite density vs the filler volume fraction as obtained 
from the experiments. As expected, the density increases with the addition of aluminum particles in 
the epoxy resin. In Figure 13, the variation of composite Poisson ratio vs filler volume fraction 
calculated from Eqs S6,S7. It can be observed that, as expected, the Poisson ratio decreases with the 
addition of particles and that there is no significant difference in the values derived from the two laws 
of mixtures. 
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Figure S1. Density of the composite material vs the filler volume fraction. 

 

Figure S2 Poisson’s radio of the composite material vs the filler volume fraction. 

 

Figure S3 Variation of λ (lamda) vs filler volume fraction. 
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The variation of the coefficient λ (lamda), mentioned previously, as denoting the relationship 
between the applied stress P1 applied to the composite and the stress P0 in the filler-matrix interface, 
vs volume fraction Uf calculated from Eq S8 is illustrated in Figure S3. It can be observed that λ 
decreases as Uf increases. It means that the addition of particles in the matrix decreases the stress at 
the interface. This interaction of the aluminum inclusions surface with epoxy resin is usually more 
complicated than a simple mechanical effect. The presence of the inclusions restricts the segmental 
and molecular mobility of the polymer, as absorption interaction in epoxy resin surface layers into 
aluminum particles occurs.   

 

Figure S4 Variation of composite modulus vs filler volume fraction. 

The variation of the composite modulus Ec vs volume fraction Uf was plotted in Figure S4. 
Theoretical values obtained from Eq S7 were compared to experimental results. In both cases, the 
addition of aluminum particles augments the stiffness of the polymeric matrix. However, there is a 
discrepancy between theory and experiment when the volume fraction increases. Although it is 
assumed that the volume fraction of the inclusions is small, so that the interaction among them may be 
neglected, it can be said that in reality such an interaction normally exists. Therefore, it can be 
concluded that the theoretical values obtained from Eq S8 for the elastic modulus are valid for low 
volume fractions. For higher volume fractions a theory, which will consider the adhesion efficiency 
and the interaction between epoxy and aluminum particles by taking into account their distribution in 
the matrix or their arrangement (see Figure S8), should be used. Finally, as was previously mentioned 
in the material description, all the inclusions do not have the same size (radius), which was taken as   
20 μ, i.e., rf = 0.020 mm. This fact does not appear in the theoretical formula (Eq S8) but may affect 
experimental results. 
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Figure S5. Variation of radial stress vs radius. 

Now, let us calculate the radial stress and the radial displacement in the composite for a certain 
volume fraction. By choosing the largest value used in the experiments, namely for Uf = 0.030, with 
filler inclusion rf = 20 μ., we have rm = 29.756 μ. The variation of the radial stress σr (sigma) vs radius 
is illustrated in Figures S5,S6, taking into consideration Eqs S9,S10, Eq S8 and that the radius of the 
aluminum particles is 20 μ. (0.020 mm), it can be observed that there is an abrupt decrease in stress, 
up to 0.021 mm. Later, a smoother decrease occurs up to 0.024 mm and then tends asymptotically to 
the horizontal axis. 

 

Figure S6. Variation of radial stress vs radius. 
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Figure S7. Variation of displacement vs radius. 

In Figure S7 the variation of the radial displacement ur is plotted vs radius, by taking into 
consideration Eqs S9,S10. A similar behavior to that of stress can be observed. An abrupt decrease 
after the filler radius 0.020 mm, then a small decrease up to 0.024 mm, and finally, a slight decrease 
where the curve tends as in the previous case, almost asymptotically to the horizontal axis. 
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