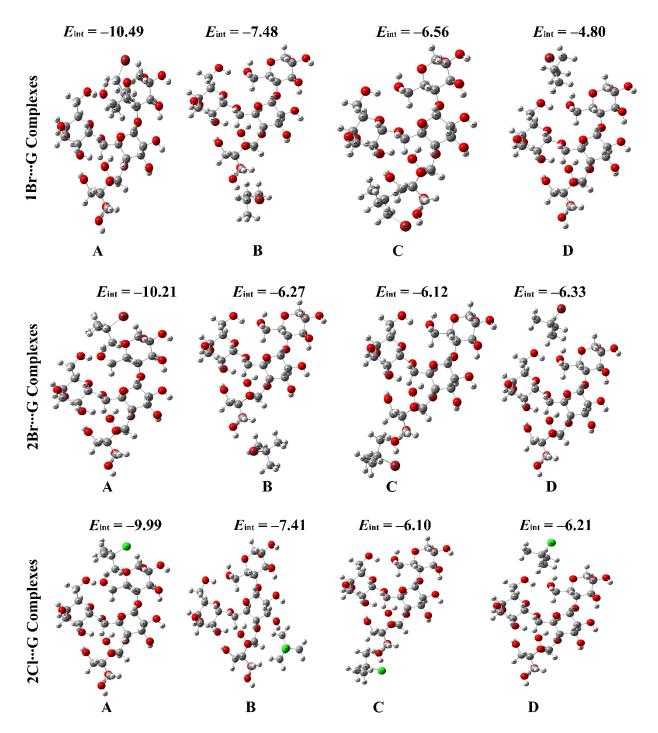


AIMS Environmental Science, 12(3): 419–434.

DOI: 10.3934/environsci.2025019

Received: 20 August 2024 Revised: 06 January 2025 Accepted: 08 May 2025 Published: 19 May 2025


https://www.aimspress.com/journal/environmental

Research article

QSAR study and theoretical investigation on the lethality of halogenated aliphatic hydrocarbons toward *Aspergillus* (A.) *Nidulans*

Jabir H. Al-Fahemi^{1,*}, Faten A. Aljiffrey¹, Elshafie A. M. Gad² and Mahmoud A. A. Ibrahim^{3,4,5,*}

- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- ² Petrochemicals Department, Egyptian Petroleum Research Institute, Cairo, Egypt
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
- ⁴ Department of Engineering, College of Engineering and Technology, University of Technology and Applied Sciences, Nizwa 611, Sultanate of Oman
- School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
- * Correspondence: Email: jhfahemi@uqu.edu.sa, m.ibrahim@compchem.net.

Figure S1. Optimized complexes within all studied configurations of the 1-bromo-2-methylpropane (1Br)····, 2-bromo-2-methylpropane (2Br)····, and 2-chloro-2-methylpropane (2Cl)···· α -glucan (G). Interaction energy (E_{int}) values are in kcal/mol.

Table S1: A comparison between our model and those reported by Cronin et al.

	No. of HAHs	R^2	S	F
Our Model	55	0.897	0.219	148.766
Cronin's Model	55	0.615	0.413	44.2

© 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0)