Biophysics
http://www.aimspress.com/journal/biophysics

Research article

Electric energies of a charged sphere surrounded by electrolyte

István P. Sugár*

Neurology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029

* Correspondence: Email: istvansugar0@gmail.com.

Appendix 1

In order to calculate $E_{\text {in }}$ let us substitute the derivative of Eq. 2 into Eq.3:

$$
\begin{equation*}
\mathrm{E}_{\text {in }}=\frac{\mathrm{k}_{\mathrm{e}} \mathrm{Q}^{2} \lambda_{\mathrm{D}}^{2}}{2 \varepsilon_{r} \mathrm{R}^{2}} \mathrm{e}^{-2 \mathrm{R} / \lambda_{\mathrm{D}}} \int_{0}^{\mathrm{R}}\left[-\frac{\sinh \left(\frac{\mathrm{Z}}{\lambda_{\mathrm{D}}}\right)}{\mathrm{Z}^{2}}+\frac{\cosh \left(\frac{\mathrm{Z}}{\lambda_{\mathrm{D}}}\right)}{\mathrm{Z} \lambda_{\mathrm{D}}}\right]^{2} \mathrm{Z}^{2} \mathrm{dZ} \tag{A1}
\end{equation*}
$$

The integral in Eq.A1 can be separated to three terms:

$$
\begin{align*}
& \int_{0}^{\mathrm{R}}\left[-\frac{\sinh \left(\frac{\mathrm{Z}}{\lambda_{D}}\right)}{\mathrm{Z}^{2}}+\frac{\cosh \left(\frac{\mathrm{Z}}{\lambda_{D}}\right)}{\mathrm{Z} \lambda_{\mathrm{D}}}\right]^{2} \mathrm{Z}^{2} \mathrm{dZ}=\int_{0}^{\mathrm{R}} \frac{\sinh ^{2}\left(\frac{\mathrm{Z}}{\lambda_{D}}\right)}{\mathrm{Z}^{2}} d Z-\int_{0}^{\mathrm{R}} \frac{\sinh \left(\frac{2 \mathrm{Z}}{\lambda_{D}}\right)}{\mathrm{Z} \lambda_{D}} d Z+ \\
& \int_{0}^{\mathrm{R}} \sinh ^{2} \frac{\left(\frac{\mathrm{Z}}{\lambda_{D}}\right)+1}{\lambda_{D}^{2}} \mathrm{dZ} \tag{A2}
\end{align*}
$$

The first term in Eq.A2 is:

$$
\int_{0}^{\mathrm{R}} \frac{\mathrm{e}^{2 \mathrm{Z} / \lambda_{\mathrm{D}}}-2+\mathrm{e}^{-2 \mathrm{Z} / \lambda_{\mathrm{D}}}}{4 \mathrm{Z}^{2}} \mathrm{dZ}=\left[-\frac{\mathrm{e}^{2 \mathrm{Z} / \lambda_{\mathrm{D}}}}{4 \mathrm{Z}}\right]_{0}^{\mathrm{R}}+\frac{1}{2 \lambda_{\mathrm{D}}} \int_{0}^{\mathrm{R}} \frac{\mathrm{e}^{2 \mathrm{Z} / \lambda_{\mathrm{D}}}}{\mathrm{Z}} \mathrm{dZ}+\left[\frac{1}{2 \mathrm{Z}}\right]_{0}^{\mathrm{R}}+
$$

$$
\begin{align*}
& {\left[-\frac{e^{-2 Z / \lambda_{\mathrm{D}}}}{4 Z}\right]_{0}^{\mathrm{R}}-\frac{1}{2 \lambda_{\mathrm{D}}} \int_{0}^{\mathrm{R}} \frac{\mathrm{e}^{-\frac{2 \mathrm{Z}}{\lambda_{\mathrm{D}}}}}{\mathrm{Z}} \mathrm{dZ}=\frac{1}{2 \lambda_{\mathrm{D}}} \int_{0}^{\mathrm{R}} \frac{\mathrm{e}^{\frac{2 \mathrm{Z}}{\lambda_{\mathrm{D}}}}}{\mathrm{Z}} \mathrm{dZ}-\frac{1}{2 \lambda_{\mathrm{D}}} \int_{0}^{\mathrm{R}} \frac{\mathrm{e}^{-\frac{2 \mathrm{Z}}{\lambda_{\mathrm{D}}}}}{Z} d Z+} \\
& {\left[\frac{1-\mathrm{e}^{\frac{2 \mathrm{Z}}{\lambda_{\mathrm{D}}}}}{4 \mathrm{Z}}\right]_{0}^{\mathrm{R}}+\left[\frac{1-\mathrm{e}^{-\frac{2 \mathrm{Z}}{\lambda_{\mathrm{D}}}}}{4 \mathrm{Z}}\right]_{0}^{\mathrm{R}}=} \\
& \frac{1}{2 \lambda_{\mathrm{D}}} \int_{0}^{\mathrm{R}} \frac{\mathrm{e}^{\frac{2 \mathrm{Z}}{\lambda_{\mathrm{D}}}}}{\mathrm{Z}} \mathrm{dZ}-\frac{1}{2 \lambda_{\mathrm{D}}} \int_{0}^{\mathrm{R}} \frac{\mathrm{e}^{-\frac{2 \mathrm{Z}}{\lambda_{\mathrm{D}}}}}{\mathrm{Z}} \mathrm{dZ}+\frac{1}{2 \mathrm{R}}\left[1-\cosh \left(\frac{2 \mathrm{R}}{\lambda_{\mathrm{D}}}\right)\right] \tag{A3}
\end{align*}
$$

Note that above we used [1]: $\int \frac{e^{a x}}{x^{2}} d x=\left(-\frac{e^{a x}}{x}+a \int \frac{e^{a x}}{x} d x\right)$.
Calculating the last term in Eq.A3 we used the following two limits:

$$
\begin{equation*}
\lim _{Z \rightarrow 0}\left[\frac{1-e^{\frac{2 \mathrm{Z}}{\lambda_{D}}}}{Z}\right]=\lim _{Z \rightarrow 0} \frac{1-\left[1+\frac{1}{1!}\left(\frac{2 \mathrm{Z}}{\lambda_{D}}\right)^{1}+\frac{1}{2!}\left(\frac{2 \mathrm{Z}}{\lambda_{\mathrm{D}}}\right)^{2}+\frac{1}{3!}\left(\frac{2 \mathrm{Z}}{\lambda_{D}}\right)^{3}+\cdots\right]}{Z}=-\frac{2}{\lambda_{D}} \tag{A4}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{Z \rightarrow 0}\left[\frac{1-e^{-\frac{2 Z}{\lambda_{D}}}}{Z}\right]=\lim _{Z \rightarrow 0} \frac{1-\left[1-\frac{1}{1!}\left(\frac{2 Z}{\lambda_{D}}\right)^{1}+\frac{1}{2!}\left(\frac{2 Z}{\lambda_{D}}\right)^{2}-\frac{1}{3!}\left(\frac{2 Z}{\lambda_{D}}\right)^{3}+\cdots\right]}{Z}=\frac{2}{\lambda_{D}} \tag{A5}
\end{equation*}
$$

The second term in Eq.A2 is:

$$
\begin{equation*}
-\int_{0}^{\mathrm{R}} \frac{\sinh \left(\frac{2 \mathrm{Z}}{\lambda_{\mathrm{D}}}\right)}{\mathrm{Z} \lambda_{\mathrm{D}}} \mathrm{dZ}=\frac{1}{2 \lambda_{\mathrm{D}}} \int_{0}^{\mathrm{R}} \frac{\mathrm{e}^{-\frac{2 \mathrm{Z}}{\lambda_{\mathrm{D}}}}}{\mathrm{Z}} \mathrm{dZ}-\frac{1}{2 \lambda_{\mathrm{D}}} \int_{0}^{\mathrm{R}} \frac{\mathrm{e}^{\frac{2 \mathrm{Z}}{\lambda_{\mathrm{D}}}}}{\mathrm{Z}} d Z \tag{A6}
\end{equation*}
$$

The third term in Eq.A2 is:

$$
\begin{equation*}
\int_{0}^{\mathrm{R}} \frac{\sinh ^{2}\left(\frac{\mathrm{Z}}{\lambda_{\mathrm{D}}}\right)}{\lambda_{\mathrm{D}}^{2}} \mathrm{dZ}+\int_{0}^{\mathrm{R}} \frac{1}{\lambda_{\mathrm{D}}^{2}} \mathrm{dZ}=\frac{1}{\lambda_{\mathrm{D}}^{2}}\left[\frac{\lambda_{\mathrm{D}}}{2} \sinh \left(\frac{\mathrm{Z}}{\lambda_{\mathrm{D}}}\right) \cosh \left(\frac{\mathrm{Z}}{\lambda_{\mathrm{D}}}\right)+\frac{\mathrm{Z}}{2}\right]_{0}^{\mathrm{R}} \tag{A7}
\end{equation*}
$$

After summarizing the three terms (Eqs.A3,A6,A7) of the integral in Eq.A1 we get E_{in} :

$$
\mathrm{E}_{\text {in }}=\frac{\mathrm{k}_{\mathrm{e}} \mathrm{Q}^{2} \lambda_{\mathrm{D}}^{2}}{2 \varepsilon_{\mathrm{r}} \mathrm{R}^{2}} \mathrm{e}^{-\frac{2 \mathrm{R}}{\lambda_{\mathrm{D}}}}\left\{\frac{1}{2 \lambda_{\mathrm{D}}} \sinh \left(\frac{\mathrm{R}}{\lambda_{\mathrm{D}}}\right) \cosh \left(\frac{\mathrm{R}}{\lambda_{\mathrm{D}}}\right)+\frac{\mathrm{R}}{2 \lambda_{\mathrm{D}}^{2}}+\frac{1}{2 \mathrm{R}}\left[1-\cosh \left(\frac{2 \mathrm{R}}{\lambda_{\mathrm{D}}}\right)\right]\right\}=
$$

$$
\begin{equation*}
\frac{\mathrm{k}_{\mathrm{e}} \mathrm{Q}^{2} \lambda_{\mathrm{D}}^{2}}{2 \varepsilon_{\mathrm{r}} \mathrm{R}^{2}} \mathrm{e}^{-\frac{2 \mathrm{R}}{\lambda_{\mathrm{D}}}}\left\{\frac{1}{2 \lambda_{\mathrm{D}}} \sinh \left(\frac{\mathrm{R}}{\lambda_{\mathrm{D}}}\right) \cosh \left(\frac{\mathrm{R}}{\lambda_{\mathrm{D}}}\right)+\frac{\mathrm{R}}{2 \lambda_{\mathrm{D}}^{2}}-\frac{1}{\mathrm{R}} \sinh ^{2}\left(\frac{\mathrm{R}}{\lambda_{\mathrm{D}}}\right)\right\} \tag{A8}
\end{equation*}
$$

Appendix 2

In order to calculate $E_{\text {out }}$ let us substitute the derivative of Eq. 1 into Eq.3:

$$
\begin{gather*}
\mathrm{E}_{\text {out }}=\frac{\mathrm{k}_{\mathrm{e}} \mathrm{Q}^{2} \lambda_{\mathrm{D}}^{2}}{2 \varepsilon_{r} \mathrm{R}^{2}} \sinh ^{2}\left(\frac{\mathrm{R}}{\lambda_{\mathrm{D}}}\right) \int_{\mathrm{R}}^{\infty} \mathrm{e}^{-2 \mathrm{Z} / \lambda_{\mathrm{D}}}\left[\frac{1}{\mathrm{Z}}+\frac{1}{\lambda_{\mathrm{D}}}\right]^{2} \mathrm{dZ}= \\
\frac{2 \mathrm{k}_{\mathrm{e}} \mathrm{Q}^{2}}{\varepsilon_{r} \mathrm{R}^{2}} \sinh ^{2}\left(\frac{\mathrm{R}}{\lambda_{\mathrm{D}}}\right) \int_{\mathrm{R}}^{\infty} \mathrm{e}^{-\frac{2 \mathrm{Z}}{\lambda_{\mathrm{D}}}}\left[\frac{\lambda_{\mathrm{D}}^{2}}{4 \mathrm{Z}^{2}}+\frac{\lambda_{\mathrm{D}}}{2 \mathrm{Z}}+\frac{1}{4}\right] \mathrm{dZ} \tag{A9}
\end{gather*}
$$

After substituting $2 Z / \lambda_{D}$ by ω in Eq.A9 we get:

$$
\begin{gather*}
\mathrm{E}_{\text {out }}=\frac{\lambda_{\mathrm{D}} \mathrm{k}_{\mathrm{e}} \mathrm{Q}^{2}}{\varepsilon_{r} \mathrm{R}^{2}} \sinh ^{2}\left(\frac{\mathrm{R}}{\lambda_{\mathrm{D}}}\right)\left\{\int_{\frac{2 \mathrm{R}}{}}^{\infty} \frac{\mathrm{e}^{-\omega}}{\lambda_{\mathrm{D}}} \mathrm{~d} \omega+\int_{\frac{2 \mathrm{R}}{\lambda_{\mathrm{D}}}}^{\infty} \frac{\mathrm{e}^{-\omega}}{\omega} \mathrm{d} \omega+\int_{\frac{2 \mathrm{R}}{}}^{\infty} \frac{\mathrm{e}^{-\omega}}{4} \mathrm{~d} \omega\right\}= \\
\frac{\lambda_{\mathrm{D}} \mathrm{k}_{\mathrm{e}} \mathrm{Q}^{2}}{\varepsilon_{r} \mathrm{R}^{2}} \sinh ^{2}\left(\frac{\mathrm{R}}{\lambda_{\mathrm{D}}}\right)\left\{\left[-\frac{\mathrm{e}^{-\omega}}{\omega}\right]_{\frac{2 \mathrm{R}}{}}^{\infty}-\int_{\frac{2 \mathrm{R}}{}}^{\infty} \frac{\mathrm{e}^{-\omega}}{\omega} \mathrm{d} \omega+\int_{\frac{2 \mathrm{R}}{}}^{\frac{\lambda_{\mathrm{D}}}{\lambda_{\mathrm{D}}}} \frac{\mathrm{e}^{-\omega}}{\omega} \mathrm{d} \omega+\int_{\frac{2 \mathrm{R}}{}}^{\infty} \frac{\mathrm{e}^{-\omega}}{4} \mathrm{~d} \omega\right\}= \\
\frac{\lambda_{\mathrm{D}} \mathrm{k}_{\mathrm{e}} \mathrm{Q}^{2}}{\varepsilon_{r} \mathrm{R}^{2}} \mathrm{e}^{-\frac{2 \mathrm{R}}{\lambda_{\mathrm{D}}}}\left(\frac{\lambda_{\mathrm{D}}}{2 \mathrm{R}}+\frac{1}{4}\right) \sinh ^{2}\left(\frac{\mathrm{R}}{\lambda_{\mathrm{D}}}\right) \tag{A10}
\end{gather*}
$$

Note that above we used [1]: $\int \frac{e^{a x}}{x^{2}} d x=\left(-\frac{e^{a x}}{x}+a \int \frac{e^{a x}}{x} d x\right)$.

Appendix 3

$$
\begin{gather*}
\mathrm{E}_{\mathrm{CC}}=\frac{\mathrm{k}_{\mathrm{e}} \mathrm{Q}^{2}}{2 \varepsilon_{r} \mathrm{R}^{2}} \lim _{\mathrm{D} \rightarrow \infty} \lambda_{\mathrm{D}} \mathrm{e}^{-\frac{\mathrm{R}}{\lambda_{\mathrm{D}}}} \sinh \left(\frac{\mathrm{R}}{\lambda_{\mathrm{D}}}\right)= \\
\frac{\mathrm{k}_{\mathrm{e}} \mathrm{Q}^{2}}{2 \varepsilon_{r} \mathrm{R}^{2}} \lim _{\lambda_{\mathrm{D}} \rightarrow \infty} \lambda_{\mathrm{D}} \mathrm{e}^{-\frac{\mathrm{R}}{\lambda_{\mathrm{D}}}}\left[\frac{\mathrm{R}}{\lambda_{\mathrm{D}}}+\frac{1}{3!}\left(\frac{\mathrm{R}}{\lambda_{\mathrm{D}}}\right)^{3}+\frac{1}{5!}\left(\frac{\mathrm{R}}{\lambda_{\mathrm{D}}}\right)^{5}+\cdots\right]= \\
\frac{\mathrm{k}_{\mathrm{e}} \mathrm{Q}^{2}}{2 \varepsilon_{r} \mathrm{R}} \quad \text { (A11) } \tag{A11}
\end{gather*}
$$

$$
\begin{align*}
& \mathrm{E}_{\text {in }}=\frac{\mathrm{k}_{\mathrm{e}} \mathrm{Q}^{2}}{2 \varepsilon_{r} \mathrm{R}^{2}} \lim _{\mathrm{D}} \rightarrow \infty\left[\mathrm{e}^{-\frac{2 \mathrm{R}}{\lambda_{\mathrm{D}}}}\left\{\frac{\lambda_{\mathrm{D}}}{2} \sinh \left(\frac{\mathrm{R}}{\lambda_{\mathrm{D}}}\right) \cosh \left(\frac{\mathrm{R}}{\lambda_{\mathrm{D}}}\right)+\frac{\mathrm{R}}{2}-\frac{\lambda_{\mathrm{D}}^{2}}{\mathrm{R}} \sinh ^{2}\left(\frac{\mathrm{R}}{\lambda_{\mathrm{D}}}\right)\right\}\right]= \\
& \frac{\mathrm{k}_{\mathrm{e}} \mathrm{Q}^{2}}{2 \varepsilon_{r} \mathrm{R}^{2}}\left\{\lim _{\lambda_{\mathrm{D}} \rightarrow \infty} \mathrm{e}^{-\frac{2 \mathrm{R}}{\lambda_{\mathrm{D}}}} \cosh \left(\frac{\mathrm{R}}{\lambda_{\mathrm{D}}}\right) \frac{\lambda_{\mathrm{D}}}{2}\left[\frac{\mathrm{R}}{\lambda_{\mathrm{D}}}+\frac{1}{3!}\left(\frac{\mathrm{R}}{\lambda_{\mathrm{D}}}\right)^{3}+\frac{1}{5!}\left(\frac{\mathrm{R}}{\lambda_{\mathrm{D}}}\right)^{5}+\cdots\right]\right\}+ \\
& \quad \frac{\mathrm{k}_{\mathrm{e}} \mathrm{Q}^{2}}{2 \varepsilon_{r} \mathrm{R}^{2}}\left[\frac{\mathrm{R}}{2}-\lim _{\lambda_{\mathrm{D}} \rightarrow \infty} \mathrm{e}^{-\frac{\mathrm{R}}{\lambda_{\mathrm{D}}}} \frac{\lambda_{\mathrm{D}}^{2}}{\mathrm{R}}\left\{\frac{\mathrm{R}^{2}}{\lambda_{\mathrm{D}}^{2}}+\frac{2 \mathrm{R}}{3!\lambda_{\mathrm{D}}}\left(\frac{\mathrm{R}}{\lambda_{\mathrm{D}}}\right)^{3}+\cdots\right\}\right]= \\
& \frac{\mathrm{k}_{\mathrm{e}} \mathrm{Q}^{2}}{2 \varepsilon_{r} \mathrm{R}^{2}}\left[\frac{\mathrm{R}}{2}+\frac{\mathrm{R}}{2}-\mathrm{R}\right]=0 \tag{A12}\\
& \mathrm{E}_{\text {out }}=\frac{\mathrm{k}_{\mathrm{e}} \mathrm{Q}^{2}}{\varepsilon_{r} \mathrm{R}^{2}} \lim _{\lambda_{\mathrm{D}} \rightarrow \infty}\left\{\mathrm{e}^{-2 \mathrm{R} / \lambda_{\mathrm{D}}} \sinh ^{2}\left(\frac{\mathrm{R}}{\lambda_{\mathrm{D}}}\right)\left[\frac{\lambda_{\mathrm{D}}^{2}}{2 \mathrm{R}}+\frac{\lambda_{\mathrm{D}}}{4}\right]\right\}= \\
& \frac{\mathrm{k}_{\mathrm{e}} \mathrm{Q}^{2}}{2 \varepsilon_{r} \mathrm{R}} \\
& \varepsilon_{r} \mathrm{R}^{2} \tag{A13}\\
& \lambda_{\mathrm{D}} \rightarrow \infty \\
& \lim _{\mathrm{D}}\left\{\mathrm{e}^{-2 \mathrm{R} / \lambda_{\mathrm{D}}}\left\{\frac{\mathrm{R}^{2}}{\lambda_{\mathrm{D}}^{2}}+\frac{2 \mathrm{R}}{3!\lambda_{\mathrm{D}}}\left(\frac{\mathrm{R}}{\lambda_{\mathrm{D}}}\right)^{3}+\cdots\right\}\left[\frac{\lambda_{\mathrm{D}}^{2}}{2 \mathrm{R}}+\frac{\lambda_{\mathrm{D}}}{4}\right]\right\}=
\end{align*}
$$

Appendix 4

Here we calculate the energies, $\mathrm{E}_{\mathrm{CC}}, \mathrm{E}_{\text {in }}$ and $\mathrm{E}_{\text {out }}$, when λ_{D} approaches zero.

$$
\begin{gather*}
\mathrm{E}_{\mathrm{CC}}=\frac{\mathrm{k}_{\mathrm{e}} \mathrm{Q}^{2}}{2 \varepsilon_{r} \mathrm{R}^{2}} \lim _{\lambda_{\mathrm{D}} \rightarrow 0} \lambda_{\mathrm{D}} \mathrm{e}^{-\frac{\mathrm{R}}{\lambda_{\mathrm{D}}}} \sinh \left(\frac{\mathrm{R}}{\lambda_{\mathrm{D}}}\right)= \\
\frac{\mathrm{k}_{\mathrm{e}} \mathrm{Q}^{2}}{2 \varepsilon_{r} \mathrm{R}^{2}} \cdot \lim _{\lambda_{\mathrm{D}} \rightarrow 0} \lambda_{\mathrm{D}} \frac{1-\mathrm{e}^{-\frac{2 \cdot \mathrm{R}}{\lambda_{\mathrm{D}}}}}{2}=0 \tag{A14}\\
\mathrm{E}_{\text {in }}=\frac{\mathrm{k}_{\mathrm{e}} \mathrm{Q}^{2}}{2 \varepsilon_{r} \mathrm{R}^{2}} \lim _{\lambda_{\mathrm{D}} \rightarrow 0}\left[\mathrm{e}^{-\frac{2 \mathrm{R}}{\lambda_{\mathrm{D}}}}\left\{\frac{\lambda_{\mathrm{D}}}{2} \sinh \left(\frac{\mathrm{R}}{\lambda_{\mathrm{D}}}\right) \cosh \left(\frac{\mathrm{R}}{\lambda_{\mathrm{D}}}\right)+\frac{\mathrm{R}}{2}-\frac{\lambda_{\mathrm{D}}^{2}}{\mathrm{R}} \sinh ^{2}\left(\frac{\mathrm{R}}{\lambda_{\mathrm{D}}}\right)\right\}\right]= \\
\frac{\mathrm{k}_{\mathrm{e}} \mathrm{Q}^{2}}{2 \varepsilon_{r} \mathrm{R}^{2}} \lim _{\lambda_{\mathrm{D}} \rightarrow 0} \mathrm{e}^{-\frac{2 \mathrm{R}}{\lambda_{\mathrm{D}}}}\left[\frac{\lambda_{\mathrm{D}}}{2} \frac{\mathrm{e}^{\frac{2 \cdot \mathrm{R}}{\lambda_{\mathrm{D}}}}-\mathrm{e}^{-\frac{2 \cdot \mathrm{R}}{\lambda_{\mathrm{D}}}}}{4}+\frac{\mathrm{R}}{2}-\frac{\lambda_{\mathrm{D}}^{2}}{\mathrm{R}} \frac{\mathrm{e}^{\frac{2 \cdot \mathrm{R}}{\lambda_{\mathrm{D}}}}-2+\mathrm{e}^{-\frac{2 \cdot \mathrm{R}}{\lambda_{\mathrm{D}}}}}{4}\right]= \\
\frac{\mathrm{k}_{\mathrm{e}} \mathrm{Q}^{2}}{2 \varepsilon_{r} \mathrm{R}^{2}} \lim _{\mathrm{D}} \rightarrow 0 \tag{A15}\\
{\left[\frac{\lambda_{\mathrm{D}}}{2} \frac{1-\mathrm{e}^{-\frac{4 \cdot \mathrm{R}}{\lambda_{\mathrm{D}}}}}{4}+\frac{\mathrm{R}}{2} \mathrm{e}^{-\frac{2 \mathrm{R}}{\lambda_{\mathrm{D}}}}-\frac{\lambda_{\mathrm{D}}^{2}}{\mathrm{R}} \frac{1-2 \mathrm{e}^{-\frac{2 \mathrm{R}}{\lambda_{\mathrm{D}}}}+\mathrm{e}^{-\frac{4 \cdot \mathrm{R}}{\lambda_{\mathrm{D}}}}}{4}\right]=0}
\end{gather*}
$$

$$
\begin{gather*}
\mathrm{E}_{\text {out }}=\frac{\mathrm{k}_{\mathrm{e}} \mathrm{Q}^{2}}{\varepsilon_{r} \mathrm{R}^{2}} \lim _{\mathrm{D} \rightarrow 0}\left\{\sinh ^{2}\left(\frac{\mathrm{R}}{\lambda_{\mathrm{D}}}\right)\left[\frac{\lambda_{\mathrm{D}}^{2}}{2 \mathrm{R}}+\frac{\lambda_{\mathrm{D}}}{4}\right]\right\} \mathrm{e}^{-2 \mathrm{R} / \lambda_{\mathrm{D}}}= \\
\frac{\mathrm{k}_{\mathrm{e}} \mathrm{Q}^{2}}{\varepsilon_{r} \mathrm{R}^{2}} \lim _{\lambda_{\mathrm{D}} \rightarrow 0}\left\{\frac{1-2 \mathrm{e}^{-\frac{2 \mathrm{R}}{\lambda_{\mathrm{D}}}}+\mathrm{e}^{-\frac{4 \cdot \mathrm{R}}{\lambda_{\mathrm{D}}}}}{4}\left[\frac{\lambda_{\mathrm{D}}^{2}}{2 \mathrm{R}}+\frac{\lambda_{\mathrm{D}}}{4}\right]\right\}=0 \tag{A16}
\end{gather*}
$$

References

1. Moll VH (2015) Special Integrals of Gradsteyn and Ryzhik: the Proofs-Volume II. Series: Monographs and Research Notes in Mathematics, CRC Press.
© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
