

AIMS Biophysics, 5(1): 77–96. DOI: 10.3934/biophy.2018.1.77 Received: 19 January 2017 Accepted: 12 March 2018 Published: 22 March 2018

http://www.aimspress.com/journal/biophysics

Research article

Molecular dynamics simulations of metalloproteins: A folding study of

rubredoxin from *Pyrococcus furiosus*

Davide Sala¹, Andrea Giachetti² and Antonio Rosato^{1,3,*}

- ¹ Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- ² Interuniversity Consortium of Magnetic Resonance of Metallo Proteins (CIRMMP), Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- ³ Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
- * Correspondence: Email: rosato@cerm.unifi.it; Tel: +390554574267.

Supplementary

Table S1. Secondary structure persistency per-residue of the APO simulation.

#Residue	Strand	Helix	Turn	#Residue	Strand	Helix	Turn
1	0.00	0.00	0.00	28	0.00	0.00	0.00
2	0.97	0.00	0.00	29	0.00	0.58	0.25
3	1.00	0.00	0.00	30	0.00	0.58	0.41
4	1.00	0.00	0.00	31	0.00	0.58	0.38
5	1.00	0.00	0.00	32	0.00	0.00	0.00
6	0.00	0.00	0.49	33	0.00	0.00	0.00
7	0.00	0.00	0.49	34	0.00	0.00	0.93
8	0.02	0.00	0.32	35	0.00	0.00	0.93
9	0.00	0.00	0.09	36	0.00	0.00	0.00

Continued on next page

#Residue	Strand	Helix	Turn	#Residue	Strand	Helix	Turn
	0.00		0.00	27	0.01		0.00
10	0.09	0.00	0.00	37	0.91	0.00	0.00
11	1.00	0.00	0.00	38	0.42	0.00	0.00
12	1.00	0.00	0.00	39	0.00	0.01	0.98
13	0.95	0.00	0.00	40	0.00	0.01	0.99
14	0.00	0.02	0.97	41	0.00	0.01	0.98
15	0.00	0.02	0.98	42	0.00	0.00	0.42
16	0.00	0.02	0.97	43	0.42	0.00	0.00
17	0.10	0.00	0.00	44	0.91	0.00	0.00
18	0.98	0.00	0.00	45	0.00	0.67	0.32
19	0.00	0.23	0.76	46	0.00	0.67	0.33
20	0.00	0.23	0.76	47	0.00	0.67	0.01
21	0.00	0.23	0.76	48	0.99	0.00	0.00
22	0.00	0.00	0.99	49	1.00	0.00	0.00
23	0.98	0.00	0.00	50	0.99	0.00	0.00
24	0.00	0.00	0.94	51	0.05	0.00	0.00
25	0.00	0.00	0.94	52	0.78	0.00	0.00
26	0.00	0.00	0.94	53	0.00	0.00	0.00
27	0.00	0.00	0.00				

The residues involved in a native helix and β -strand are colored in blue and green, respectively. Residues with significant (>0.3) persistency of non-native secondary structures are in bold.

#Residue	Strand	Helix	Turn	#Residue	β-sheet	Helix	Turn
1	0.00	0.00	0.00	28	0.41	0.00	0.00
2	0.41	0.00	0.00	29	0.01	0.00	0.00
3	0.01	0.00	0.00	30	0.00	0.00	0.00
4	0.00	0.00	0.00	31	0.00	0.00	0.00
5	0.00	0.00	0.00	32	0.00	0.00	0.00
6	0.00	0.00	0.00	33	0.00	0.00	0.00
7	0.00	0.00	0.00	34	0.00	0.15	0.85
8	0.01	0.00	0.00	35	0.00	0.15	0.85
9	0.00	0.00	0.00	36	0.00	0.15	0.79
10	0.00	0.00	0.00	37	0.00	0.00	0.00
11	0.00	0.08	0.40	38	0.00	0.00	0.00
12	0.00	0.12	0.46	39	0.00	0.00	0.00
13	0.00	<u>0.52</u>	0.37	40	0.01	0.00	0.00
14	0.00	<u>0.52</u>	0.43	41	0.01	0.00	0.00
15	0.00	<u>0.49</u>	0.35	42	0.00	0.00	0.00
16	0.00	0.27	0.24	43	0.00	0.00	0.00
17	0.00	0.11	0.26	44	0.00	0.00	0.00
18	0.00	0.00	0.29	45	0.01	0.00	0.00

Table S2. Secondary structure persistency per-residue of the F-cMD simulation.

Continued on next page

#Residue	Strand	Helix	Turn	#Residue	β-sheet	Helix	Turn	
19	0.00	0.00	0.29	46	0.00	0.00	0.00	
20	0.01	0.07	0.04	47	0.00	0.37	0.57	
21	0.01	0.07	0.30	48	0.00	<u>0.41</u>	0.57	
22	0.01	0.07	0.28	49	0.00	<u>0.50</u>	0.48	
23	0.37	0.00	0.00	50	0.00	<u>0.45</u>	0.31	
24	0.00	0.00	0.00	51	0.37	0.19	0.15	
25	0.00	0.14	0.72	52	0.00	0.07	0.10	
26	0.00	0.14	0.73	53	0.00	0.00	0.00	
27	0.00	0.14	0.26					

The residues involved in native helix and β -strand structures are colored in blue and green, respectively. Residues with significant (>0.3) persistency of non-native strand and helix are in bold and underlined bold, respectively.

Table S3. Secondary structure persistency per-residue of the F-aMD simulation.

#Residue	Strand	Helix	Turn	#Residue	β-sheet	Helix	Turn
1	0.00	0.00	0.00	28	0.17	0.32	0.16
2	0.09	0.00	0.06	29	0.12	0.30	0.33
3	0.12	0.00	0.07	30	0.05	0.25	0.39
4	0.14	0.00	0.01	31	0.02	0.13	0.43
5	0.00	0.00	0.01	32	0.11	0.05	0.08
6	0.08	0.00	0.25	33	0.01	0.09	0.12
7	0.00	0.00	0.27	34	0.00	0.10	0.31
8	0.32	0.00	0.05	35	0.01	0.09	0.32
9	0.05	0.04	0.11	36	0.00	0.01	0.10
10	0.01	0.13	0.12	37	0.01	0.00	0.00
11	0.04	0.16	0.11	38	0.00	0.00	0.00
12	0.07	0.17	0.11	39	0.01	0.00	0.00
13	0.09	0.19	0.12	40	0.01	0.00	0.00
14	0.01	0.15	0.33	41	0.03	0.00	0.34
15	0.00	0.12	0.35	42	0.00	0.00	0.36
16	0.02	0.08	0.33	43	0.31	0.00	0.01
17	0.04	0.05	0.15	44	0.04	0.01	0.03
18	0.16	0.05	0.03	45	0.00	0.57	0.08
19	0.07	0.10	0.33	46	0.00	0.62	0.07
20	0.01	0.13	0.38	47	0.01	0.79	0.11
21	0.02	0.12	0.42	48	0.00	<u>0.80</u>	0.10
22	0.08	0.07	0.27	49	0.00	<u>0.65</u>	0.22
23	0.06	0.05	0.15	50	0.00	<u>0.53</u>	0.26
24	0.07	0.03	0.05	51	0.01	<u>0.39</u>	0.24
25	0.06	0.17	0.18	52	0.01	0.08	0.13
26	0.05	0.23	0.22	53	0.00	0.00	0.00
27	0.08	<u>0.31</u>	0.17				

The residues involved in a native helix or β -strand structure in the crystal are colored in blue and green, respectively. Residues with significant (>0.3) persistency of non-native strand or helix structure are in bold and underlined bold, respectively.

Figure S1. Principal Component Analysis of the F-aMD and APO trajectories. Projection of the two conformational ensembles on the first two eigenvectors. The APO region is zoomed on the right. The F-aMD conformation closest to the crystal structure at 2.2 μ s is projected with a cyan triangle.

© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)