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Abstract: Invadopodia are finger-like protrusions that are commonly spotted at the membrane of the 
invasive cancer cell. These structures are a major cause of death among cancer patients through 
metastasis process. Signal transduction stimulated upon contact between ligand and membrane 
receptors is identified as one of key factors in invadopodia formation. In this study, a time-dependent 
mathematical model of signal and ligand is investigated numerically. The moving boundary of plasma 
membrane is taken as a zero-level set function and is moved by the velocity that accounted as the 
difference of gradient between intra-cellular signal and extra-cellular ligand. The model is solved using 
a combination of ghost with linear extrapolation and finite difference methods. The results showed that 
the stimulation of signal from membrane associated ligand consequently moved the plasma membrane 
outward as time increases. The highest densities of signal and ligand are recorded on the membrane 
and slowly diffused into intra-cellular and extra-cellular regions, respectively. 
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Appendix: The numerical scheme 

The equations in Section 2.1 are numerically solved using the second order centered finite 
difference and ghost fluid with linear extrapolation for the discretization of regular and neighboring 
points, respectively. The regular point is the point that is distant from the interface and the neighboring 
point is the point that is close by the interface. The existence of regular and neighboring points is 
shown in Figure 6. Apart from that, the movement of the free boundary interface is detected by the 
zero-level set function. In this paper, the number of lattice points along 𝑥  and 𝑦  axes are taken                
as ሺ𝑀௫, 𝑀௬ሻ. 

 

Figure 6. The existence of points on the grid. 

A.1 Initial Level Set Function 

The study on the level set method is focused mostly on tracking the shape or boundary changes. 
The exploration of the level set method is first introduced by [22] to capture the moving fronts in many 
multi-physics problems. A review on the level set techniques to many problems is stated in [23]. 
Further study on the level set method has been done by [24] which highlighted the Stefan problem. 
Stefan problem is related to the evolution of smooth boundaries for different phases in a pure substance, 
for instance, the changes from solid ice to water. Other exploration on the level set method is conducted 
by the studies in [25–27]. They proposed the numerical scheme for the level set method which 
combines with the front-tracking and fixed domain methods to model the growth and interaction of 
multiple dendrites in solidification. 

In this paper, the level set method is employed to detect the motion of the interface. The regions 
of intra-cellular and extra-cellular can also be determined using this method. Firstly, the level set 
function, 𝜓௜,௝ is set as the equation of a circle. The circle obtained is to portray the individual invasive 
cancer cell. From the equation of circle, the regions of the interface, intra-cellular, and extra-cellular 
are observed by using the approach of 𝜓௜,௝

௧ ൌ 0, 𝜓௜,௝
௧ ൏ 0,  and 𝜓௜,௝

௧ ൐ 0,  respectively. Afterward, the 

discretization for the Laplace operator in ligand and signal is solved. 

A.2 Numerical Discretization 

In this section, the discretization technique is presented. The forward finite difference as in Eq 5 
is used for the discretization of time. There are two different methods applied for the discretization of 
the Laplace operator in ligand and signal. At the regular point, the second order centered finite 
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difference is implemented for the 𝑥 and 𝑦 axes as in Eqs 6,7, respectively. Suppose 𝑢௜,௝
௡  is the signal 

and ligand densities at the position of ሺ𝑖, 𝑗ሻ and time 𝑛. 

ሺ𝑢௧ሻ௜,௝ ൌ
𝑢௜,௝

௡ାଵ െ 𝑢௜,௝
௡

𝑘
, 

where 𝑘 denoted timestep. 

(5) 

ሺ𝑢௫௫ሻ௜,௝
௡ ൌ

𝑢௜ାଵ,௝
௡ െ 2𝑢௜,௝

௡ ൅ 𝑢௜ିଵ,௝
௡

ℎଶ , (6) 

൫𝑢௬௬൯
௜,௝

௡
ൌ

𝑢௜,௝ାଵ
௡ െ 2𝑢௜,௝

௡ ൅ 𝑢௜,௝ିଵ
௡

ℎଶ , (7) 

where h is the step length for x and y axes. 
The second order centered finite difference is not appropriate to apply for the neighboring point 

because for this approach, five-point stencil is needed. However, for the neighboring point, one of the 
neighbors is on the other side of the interface. This point is named the ghost point and will be linearly 
extrapolated. Hence, the ghost fluid method with linear extrapolation is suitable to apply. Equations  
in (8), (9), (10), and (11) are the discretization for the neighboring points from four different directions. 
These equations are only focused on the intra-cellular or signal region. Let 𝑢௜,௝

௡   is the signal 

concentration at the position of ሺ𝑖, 𝑗ሻ and time 𝑛. 
Left neighboring point: 

ሺ𝑢௫௫ሻ௜,௝
௡ ൌ

2
ሺ1 ൅ 𝜃௫ሻℎଶ 𝑢௜ାଵ,௝

௡ െ
2

𝜃௫ℎଶ 𝑢௜,௝
௡ ൅

2
𝜃௫ሺ1 ൅ 𝜃௫ሻℎଶ 𝑢୻

௡. (8) 

Right neighboring point: 

ሺ𝑢௫௫ሻ௜,௝
௡ ൌ

2
ሺ1 ൅ 𝜃௫ሻℎଶ 𝑢௜ିଵ,௝

௡ െ
2

𝜃௫ℎଶ 𝑢௜,௝
௡ ൅

2
𝜃௫ሺ1 ൅ 𝜃௫ሻℎଶ 𝑢୻

௡. (9) 

Below neighboring point: 

൫𝑢௬௬൯
௜,௝

௡
ൌ

2

൫1 ൅ 𝜃௬൯ℎଶ
𝑢௜,௝ାଵ

௡ െ
2

𝜃௬ℎଶ 𝑢௜,௝
௡ ൅

2

𝜃௬൫1 ൅ 𝜃௬൯ℎଶ
𝑢୻

௡. (10) 

Above neighboring point: 

൫𝑢௬௬൯
௜,௝

௡
ൌ

2

൫1 ൅ 𝜃௬൯ℎଶ
𝑢௜,௝ିଵ

௡ െ
2

𝜃௬ℎଶ 𝑢௜,௝
௡ ൅

2

𝜃௬൫1 ൅ 𝜃௬൯ℎଶ
𝑢୻

௡. (11) 

As shown in the above equations, the 𝜃௫ and 𝜃௬ are clarified as the distance of points 𝑥௜ and 𝑦௝ 
to the interface, respectively. Suppose 𝜃௫ or 𝜃௬ is equal to one, hence the points are situated exactly on 
the grid. Thus, the 𝜃௫ and 𝜃௬ are determined as in Eq 12,13, respectively. 

ሺ𝜃௫ሻ௜,௝ 
௡ ൌ

⎩
⎪
⎨

⎪
⎧

𝜓௜,௝
௡

𝜓௜,௝
௡ െ 𝜓௜ିଵ,௝

௡ , 𝑥 ∈ ൣ𝑥௜ିଵ,௝, 𝑥௜,௝൧,

െ
𝜓௜,௝

௡

𝜓௜ାଵ,௝
௡ െ 𝜓௜,௝

௡ , 𝑥 ∈ ൣ𝑥௜,௝, 𝑥௜ାଵ,௝൧.
 (12) 
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൫𝜃௬൯
௜,௝ 

௡
ൌ

⎩
⎪
⎨

⎪
⎧

𝜓௜,௝
௡

𝜓௜,௝
௡ െ 𝜓௜,௝ିଵ

௡ , 𝑦 ∈ ൣ𝑦௜,௝ିଵ, 𝑦௜,௝൧,

െ
𝜓௜,௝

௡

𝜓௜,௝ାଵ
௡ െ 𝜓௜,௝

௡ , 𝑦 ∈ ൣ𝑦௜,௝, 𝑦௜,௝ାଵ൧.
 (13) 

In some cases, there are possibilities to have the interface located in between horizontal meshes 
(left and right), vertical meshes (below and above), and both meshes. Assume that there is an 
occurrence of a neighboring point from the left side as in Figure 7 and as shown in the figure, there 
are two points separated by the interface. One of the points is on the regions of intra-cellular (signal) 
and the other point is on the extra-cellular (ligand) region. Hence Eq 14 is implemented for the point 
in intra-cellular region while Eq 15 is applied for the point in extra-cellular region. 

 

Figure 7. Interface located in between two horizontal meshes with left 𝜃௫ to the neighboring point. 

𝑢௜,௝
௡ାଵ ൌ 𝑢௜,௝

௡ ൅
𝑘
ℎଶ ൤

2
ሺ1 ൅ 𝜃௫ሻ

𝑢௜ାଵ,௝
௡ െ ൬

2
𝜃௫

൅ 2൰ 𝑢௜,௝
௡ ൅

2
𝜃௫ሺ1 ൅ 𝜃௫ሻℎଶ 𝑢୻ೣ

௡ ൅ 𝑢௜,௝ାଵ
௡

൅ 𝑢௜,௝ିଵ
௡ ൨. 

(14) 

𝑢௜,௝
௡ାଵ ൌ 𝑢௜,௝

௡ ൅
𝑘
ℎଶ ൤

2
ሺ1 ൅ 𝜃௅௫ሻ

𝑢௜ିଵ,௝
௡ െ ൬

2
𝜃௅௫

൅ 2൰ 𝑢௜,௝
௡ ൅

2
𝜃௅௫ሺ1 ൅ 𝜃௅௫ሻℎଶ 𝑢୻ೣ

௡ ൅ 𝑢௜,௝ାଵ
௡

൅ 𝑢௜,௝ିଵ
௡ ൨. 

(15) 

In addition, there is also a situation where the interface is located in between two meshes as in 
Figure 8. At this point, two neighboring points are spotted, which are left and below sides from the 
interface. In this case, Eq 16 is employed. 
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Figure 8. Interface located in between four meshes with left 𝜃௫ and below 𝜃௬ to the neighboring point. 

𝑢௜,௝
௡ାଵ ൌ 𝑢௜,௝

௡ ൅
𝑘
ℎଶ ቈ

2
ሺ1 ൅ 𝜃௫ሻ

𝑢௜ାଵ,௝
௡ ൅

2

൫1 ൅ 𝜃௬൯
𝑢௜,௝ାଵ

௡ െ ቆ
2
𝜃௫

൅
2

𝜃௬
ቇ 𝑢௜,௝

௡

൅
2

𝜃௫ሺ1 ൅ 𝜃௫ሻℎଶ 𝑢୻ೣ
௡ ൅

2
𝜃௬ሺ1 ൅ 𝑦ሻℎଶ 𝑢୻೤

௡ ቉. 
(16) 

A.3 Velocity on the Interface 

 

(a) 

 

(b) 

Figure 9. The velocity on the interface for the regions of (a) signal and (b) ligand. 

The polymerization of actin led to the movement of the interface. In the meantime, the interface 
is detected by using the method of the level set where the interface is appointed to the zero-level set 
function. Study in [16,17] accounted for the polymerization of actin as the gradient of the intra-cellular 
signal. In this paper, the mathematical modeling for actin is predicted as the difference of gradient 
between intra-cellular signal and extra-cellular ligand. Figure 9a,b represented the velocity on the 
interface for signal and ligand regions, respectively. In the figures, the velocity on the 𝑦 axis is brought 
into focus. Eqs 17,18 are the technique used to obtain the velocity information on both signal and 
ligand positions, respectively. 
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Velocity on the interface for signal region: 

𝑣௬
௡ ൌ

𝜎௜,௝
௡ െ 𝜎୻

௡

𝜃௬ℎ
െ

𝑐∗
୻
௡ െ 𝑐∗

௜,௝ିଵ
௡

𝜃௅௬ℎ
. (17) 

Velocity on the interface for ligand region: 

𝑣௬
௡ ൌ

𝜎௜,௝ାଵ
௡ െ 𝜎୻

௡

𝜃௬ℎ
െ

𝑐∗
୻
௡ െ 𝑐∗

௜,௝
௡

𝜃௅௬ℎ
. 

(18) 

 

A.4 Velocity Extensions 

ሺ𝜓௫ሻ௜,௝
௡ ൌ

⎩
⎪⎪
⎨

⎪⎪
⎧

𝜓௜,௝
௡ െ 𝜓௜ିଵ,௝

௡

ℎ
, for 𝜕Ω௫

ା,

𝜓௜ାଵ,௝
௡ െ 𝜓௜,௝

௡

ℎ
,    for 𝜕Ω௫

ି

𝜓௜ାଵ,௝
௡ െ 𝜓௜ିଵ,௝

௡

2ℎ
, otherwise.

 (19) 

ሺ𝑤௫ሻ௜,௝
௡ ൌ

⎩
⎨

⎧
𝑤௜,௝

௡ െ 𝑤௜ିଵ,௝
௡

ℎ
, if 𝜓௫ ൐ 0,

𝑤௜ାଵ,௝
௡ െ 𝑤௜,௝

௡

ℎ
, if 𝜓௫ ൏ 0,

 (20) 

where 𝜕Ω௫
ି and 𝜕Ω௫

ା are left and right boundaries, respectively. 
In numerical computation, the velocity extension is crucial to prevent discontinuities on the 

interface. In many studies, the velocity is mentioned only on the interface. However, dealing with the 
level set method, the details of velocity on the interface with the whole domain is required. Hence, the 
velocity needs to be extended to recapture the velocity on each area from the interface. The study on 
the velocity extension has been widely explored in [28] and in this paper, the method of fast marching 
is applied for treating the velocity extension. On the other hand, in this paper, the velocity extension is 
calculated using Eq 4. Directing to the 𝑥  axis, this equation is discretized using Eqs 19,20                 
where Eq 20 is based on upwind technique. 

A.5 Update the Level Set Function 

The level set method is used to detect the movement of the free boundary interface by setting the 
interface as the zero-level set function. After receiving the velocity information on each area from the 
interface, the level set function needs to be updated by utilizing the equation of transport. In this case, 
the gradient of 𝜓 is formulated to the second-order upwind approach (see Eq 21) instead of the first-
order upwind scheme. As mentioned by [16], to get better volume conservation, second-order upwind 
is more appropriate to deal with since it is less dispersive compared to the first-order upwind method. 
On that account, the level set function is updated using the Eq 22. 
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ሺ𝜓௫ሻ௜,௝
௡ ൌ

⎩
⎪
⎨

⎪
⎧

െ𝜓௜ାଶ,௝
௡ ൅ 4𝜓௜ାଵ,௝

௡ െ 3𝜓௜,௝
௡

2ℎ
, if ሺ𝑣௫ሻ ൏ 0,

3𝜓௜,௝
௡ െ 4𝜓௜ିଵ,௝

௡ ൅ 𝜓௜ିଶ,௝
௡

2ℎ
,    if ሺ𝑣௫ሻ ൐ 0,

0,    if ሺ𝑣௫ሻ ൌ 0,

 

൫𝜓௬൯
௜,௝

௡
ൌ

⎩
⎪
⎨

⎪
⎧

െ𝜓௜,௝ାଶ
௡ ൅ 4𝜓௜,௝ାଵ

௡ െ 3𝜓௜,௝
௡

2ℎ
,    if ൫𝑣௬൯ ൏ 0,

3𝜓௜,௝
௡ െ 4𝜓௜,௝ିଵ

௡ ൅ 𝜓௜,௝ିଶ
௡

2ℎ
,    if ൫𝑣௬൯ ൐ 0,

0, if ൫𝑣௬൯ ൌ 0.

 

(21) 

𝜓௜,௝
௡ାଵ ൌ 𝜓௜,௝

௡ െ Δt ቂ൫ሺ𝑣௫ሻ௜,௝
௡ ൯൫ሺ𝜓௫ሻ௜,௝

௡ ൯ ൅ ቀ൫𝑣௬൯
௜,௝

௡
ቁ ቀ൫𝜓௬൯

௜,௝

௡
ቁቃ. (22) 

Note that, ሺ𝑣௫ሻ௜,௝
௡ ൌ ሺ𝑤௫ሻ௜,௝

௡  and ൫𝑣௬൯
௜,௝

௡
ൌ ൫𝑤௬൯

௜,௝

௡
, on the interface. 


