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Abstract: The objective of this work was to investigate the growth specificities of cancer cells
spheroids subjected to pulsed electric field. Multicellular HCT-116-GFP spheroids were exposed
to different electric field intensities and the volume of multicellular spheroids was monitored by
fluorescence and bright field microscopy. Thanks to an advanced mathematical model, based on
differential equations and well-adapted estimation strategies, our modeling enables us to characterize
the multicellular spheroids growth after permeabilizing pulsed electric field. In particular, we identify
the percentage of cells which are destroyed and the percentage of cells which exhibit an altered
growth pattern for different magnitudes of the electric field. We also quantify the growth resumption
upon reversible and partially irreversible electroporation. Our preliminary results provide a first
quantification of the impact of electroporation on multicellular spheroids growth, and suggest a
booming growth of partially irreversible electric pulses, leading to an accelerated regrowth.
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A. Validation of the SAEM algorithm using few measurements

To check whether the SAEM algorithm works correctly with a low number of multicellular
spheroids and a low number of measurements, Figure 1 shows the error ‖V0 − Vob j

0 , k − kob j, b − bob j‖2

using various cohorts with y individuals, drawn at random from the control group and x consecutive
times. The values {V0, k, b}ob j correspond to the values estimated with the maximum number of
measurements and multicellular spheroids (top, right of Figure 1).
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Figure 1. Errors ‖V0 − Vob j
0 , k − kob j, b − bob j‖2 according to the number of consecutive

measurements (x-axis) and to the number of multicellular spheroids (y-axis).

Radial equation of multicellular spheroids evolution in case of free growth

When considering free growth, we have F(t, x) = 0,∀t,∀x leading to study the following system

∂t P + ∇ · (~vP) = τG(P + Q) − τPtoQP,

∂t Q + ∇ · (~vQ) = τPtoQP,

∇ · ~v = τG(P + Q), (A.1)
τG(t) = ae−bt, ,

coupled with the dynamics of τPtoQ.
The first equation of System A.1 can be rewritten as

∂t P + ~v · ∇P = τG(P + Q)(1 − P) − τPtoQP. (A.2)

Simplified equation for the density of proliferating cells - We will search the simplified equation
followed by P

∂tP(t, x) =
d
dt

P̃(t, r(t, x))

= ∂tP̃(t, r(t, x)) − r(t, x)
R′(t)
R(t)

∂rP̃(t, r(t, x))

Concerning the gradient term ∇P, we have

∇P(t, x) = ∇P̃(t, r(t, x)) = ∇r(t, x)∂rP̃(t, r(t, x)).

As ∇r(t, x) = 1
R(t)

x
‖x‖ , we obtain

∇P(t, x) =
1

R(t)
x
‖x‖

∂rP̃(t, r(t, x))

and using the fact that the velocity is radial and Equation A.2, we obtain

∂tP̃(t, r(t, x)) +
ṽ − rR′(t)

R(t)
∂rP̃(t, r(t, x)) = τG(P̃ + Q̃)(1 − P̃) − τ̃PtoQP̃. (A.3)
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Using Eq. 3.7, this equation can be rewritten

∂tP̃(t, r(t, x)) +

(
ṽ

R(t)
−

r
3
τG(t)

)
∂rP̃(t, r(t, x)) = τG(P̃ + Q̃)(1 − P̃) − τ̃PtoQP̃.

Equation for the radial velocity - The equation ∇ · ~v = τG(P + Q) becomes in radial coordinates

1
R(t)

1
r2∂r(r2ṽ(t, r)) = τG(P̃ + Q̃).

By integration of the previous equation between 0 and r (the invariance by rotation implies that ṽ(t, 0) =

0), we obtain
ṽ(t, r)
R(t)

=
1
r2

∫ r

0
r̃2τG(P̃ + Q̃)dr̃.

and this gives as P̃ + Q̃ = 1 inside the tumor

ṽ(t, r)
R(t)

=
r
3
τG(t).

This implies that P̃ follows for each r ∈ [0,R(t)], the following EDO

P̃′ = τG(1 − P̃) − τ̃PtoQP̃.
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