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Abstract: Existing comparative studies between individual-based models of growing cell populations
and their continuum counterparts have mainly been focused on homogeneous populations, in which all
cells have the same phenotypic characteristics. However, significant intercellular phenotypic variability
is commonly observed in cellular systems. In light of these considerations, we develop here an
individual-based model for the growth of phenotypically heterogeneous cell populations. In this
model, the phenotypic state of each cell is described by a structuring variable that captures intercellular
variability in cell proliferation and migration rates. The model tracks the spatial evolutionary dynamics
of single cells, which undergo pressure-dependent proliferation, heritable phenotypic changes and
directional movement in response to pressure differentials. We formally show that the continuum
limit of this model comprises a non-local partial differential equation for the cell population density
function, which generalises earlier models of growing cell populations. We report on the results
of numerical simulations of the individual-based model which illustrate how proliferation-migration
tradeoffs shaping the evolutionary dynamics of single cells can lead to the formation, at the population
level, of travelling waves whereby highly-mobile cells locally dominate at the invasive front, while
more-proliferative cells are found at the rear. Moreover, we demonstrate that there is an excellent
quantitative agreement between these results and the results of numerical simulations and formal
travelling-wave analysis of the continuum model, when sufficiently large cell numbers are considered.
We also provide numerical evidence of scenarios in which the predictions of the two models may differ
due to demographic stochasticity, which cannot be captured by the continuum model. This indicates
the importance of integrating individual-based and continuum approaches when modelling the growth
of phenotypically heterogeneous cell populations.
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Supplementary Material

This supplementary material file is organised as follows. In Section S1, we provide the details of the
formal derivation of the continuum model from the individual-based model. In Section S2, we carry
out formal travelling-wave analysis of the continuum model. Finally, in Section S3 we describe the
methods used to solve numerically the continuum model.

S1. Formal derivation of the continuum model

Building on the methods that we previously employed in [1-5], here we show that the non-local
PDE (3.2) can be formally derived as the appropriate continuum limit of the IB model developed in
this paper.

In the case where, between time-steps k and k + 1, each cell in phenotypic state y; € (0,Y) at
position x; € R can first move, next undergo phenotypic changes and then die or divide according to
the rules described in Section 2, the principle of mass balance gives the following difference equation
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Using the fact that for 7, y and n sufficiently small the following relations hold
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equation (S1.1) can be formally rewritten in the approximate form
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where n = n(t, x,y) and p = p(t, x). If the function n(¢, x, y) is twice continuously differentiable with
respect to the variables y and x, for 7 and y sufficiently small we can then use the Taylor expansions
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which allow us to rewrite equation (S1.2) as
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Collecting terms that contain the same derivative of n we can further simplify equation (S1.3) to
obtain

n(it+1,xy = n[l+7R0>y,p)] (S1.4)
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Rewriting the above equation by using the fact that

[(p(t,x+x) = p), + (p(t,x = x) = p).]
—[(p=pt,x+x), +(p—plt,x=x).] = pt,x+x) + plt,x—x) =2 p,

dividing both sides of the resulting equation by 7, rearranging terms and then multiplying and dividing
the terms on the right-hand side by either y? or y we find
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If the function n(t, x, y) is also continuously differentiable with respect to the variable ¢ and the function
p(t, x) is twice continuously differentiable with respect to the variable x, letting v — 0, y — 0 and
n — 0 in such a way that conditions (3.1) are met, from the latter equation we formally obtain

on Pn_po) [ @p on|(op I
M _Rr — ta— ox] ' ox .
at (yap)n+ﬁay2 ta pM naxz " ox ax ax + ax)+

0 0 0
Hence, using the definition f(y) := ) along with the fact that 9P\ _ __p) = _p’ and recalling
Pm ox), ox), Ox
that (x,y) € R x (0, Y), we find the following non-local PDE for the cell population density function
n(t, x,y)
0n (92 ono
= RO p)n+ B +@f0) |ng s+ 5oobl. (60 €RXO.7),
81‘ 0x 0x
which can easily be rewritten as the non-local PDE (3.2). Finally, zero-Neumann (i.e. no-flux)
boundary conditions aty = 0 and y = Y follow from the fact that the attempted phenotypic variation of

a cell is aborted if it requires moving into a phenotypic state that does not belong to the interval [0, Y.
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S2. Formal travelling-wave analysis for ¢ — 0

Adopting a method analogous to those that we used [6, 7], which build on the Hamilton-Jacobi
approach developed in [8—12], we make the real phase WKB ansatz [13-15]

ug(t.x.y)

n.(t,x,y)=e = , (S2.1)
which gives
0, 0 U, 1 2 1
on, = Tng, o, = . ng, 65),118 = (g (6yu£) + ;aiyua) ng.

Substituting the above expressions into the non-local PDE (4.2) gives the following Hamilton-Jacobi
equation for u.(t, x,y)

Butt, = BY) (Bt 0.pe + £3pe) = R po) + (Os,) + Ptse (63) €RX(O,F).  (S2.2)

Letting € — 0 in (S2.2) we formally obtain the following equation for the leading-order term u(t, x, y)
of the asymptotic expansion for u(¢, x, y)

A — () 0,p Dy = R(y, p) + (ayu)2 . (x,y) €RX(0,Y), (S2.3)

where p(t, x) is the leading-order term of the asymptotic expansion for p.(z, x).

Constraint on u. Consider x € R such that p(¢, x) > 0, that is, x € Supp(p), and let y(¢, x) be a non-

degenerate maximum point of u(¢, x, y), that is, y(¢, x) € arg max u(t, x, y) with 83),u(t, x,y) < 0. Letting
yel0,Y]

& — 01n (S2.1) formally gives the following constraint for all # > 0

u(t, x,y(t, x)) = n%gvé] u(t,x,y) =0, x e Supp(p), (82.4)
yelo,
which also implies that
Oyu(t,x,y(t,x)) =0 and 0,u(t, x,y(t,x)) =0, x € Supp(p). (S2.5)

Remark 1. When n.(t,x,y) is in the form (S2.1), if u(t, x,y) is a strictly concave function of y with
maximum point y = y(t, x) then the constraint (S2.4) implies that

ng(t, x,y) E\ p(t, x) O054.0(y)  weakly in measures,

where 05 v(y) is the Dirac delta centred at y = y(t, x).

Relation between j(z, x) and p(z, x). Assumptions (2.3) ensure that Supp(p) € Supp(p). Hence,
evaluating (S2.3) at y = y(, x) and using (S2.4) and (S2.5) we find

R(y(t, x), p(t,x)) =0, x € Supp(p). (52.6)

The monotonicity assumptions ensure that p — R(-, p) and y — R(¥, -) are both invertible. Therefore,
relation (S2.6) gives a one-to-one correspondence between y(z, x) and p(¢, x).
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Transport equation for y. Differentiating (S2.3) with respect to y, evaluating the resulting equation
aty = j(¢, x) and using (S2.4) and (S2.5) yields

B u(t, x,3) — f3) 0xp 05 u(t, X, 5) = ,R(F, p),  x € Supp(p). (S2.7)
Moreover, differentiating (S2.5) with respect to ¢ and x we find, respectively,
Orult, x,5) + 0o u(t, x,5) 0,5(t,x) =0 = 8ult, x,5) = —0,u(t, x,5) 8, 5(t, x)
and
Oru(t, x,3) + O u(t, x,5) 0,5(1,x) =0 = 8, u(t, x,5) = -0, u(t, x,5) 0:3(t, x).

Substituting the above expressions of 8§,u(t, x,y) and 3§xu(t, x,y) into (S2.7) and using the fact that
éﬁyu(t, x,y) < 0 gives the following transport equation for y(z, x)

0,y — () 0xp 0,y = 9,R(3, p),  x € Supp(p). (52.8)

_agyu(t’ X, )_;)

Travelling-wave problem. Substituting the travelling-wave ansatz

p(t,x) =p(2), p(t,x)=p@), wultxy) =uzy and ¥ x)=¥z) with z=x-ct, ¢>0
into (S2.3)-(S2.6) and (S2.8) gives

—(c+ fiy)p’) 0.u = Ry, p) + (Byu)*,  (z,y) € RX (0,Y),
u(z, y(z)) = max u(z,y) =0, 0u(z,5(z)) =0, 0.u(z,%z) =0, ze€ Supp(p),
R(3(2), p(z)) =0, z € Supp(p), (52.9)

—(c+a(®)p)y = —5——=0,RG,p), z € Supp(p). (52.10)
—0% u(z,7)

We consider travelling-front solutions y(z) that satisfy (S2.10) subject to the following asymptotic
condition

lim y(z) =0, (S2.11)

7——00

so that, since R(0, py;) = 0, relation (S2.9) gives lim p(z) = py.
7——00

Monotonicity of travelling-front solutions. Differentiating (S2.9) with respect to z gives

yR((2), p(2))y' (2) + 0,R(¥(2), p(2))p’(2) = 0,  z € Supp(p). (52.12)

Substituting the expression of p” given by (S2.12) into (S2.10) yields
_ _ 8yR()_” P o _
—C ’ + (1 ) A pr— .~ ’ N a R ) )’

that is, )

., _ —0R(, p) ( 1 AG) §) )

= — + — , 2 € Supp(p). (82.13)

Y c —05u(z,y)  —0,R(, p) PP

Since 83),u(z,y) < 0 and d,R(y,:) < 0 fory € (0,Y], using (S2.13) and the expression of p’ given

by (52.12) we find
(@) >0 and p'(x) <0, ze€ Supp(p). (S2.14)
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Position of the edge of the travelling front p(z). Relation (S2.9) and monotonicity results (S2.14)
along with the fact that R(Y,0) = O [¢f. assumptions (2.7)] imply that the position of the edge of the
travelling front p(z) coincides with the unique point ¢ € R such that y(£) = Y and §(z) < Y on (—oo0, {).
Hence, Supp(p) = (=0, {).

Minimal wave speed. In the case where R(y, p) is defined via (2.8), relation (S2.9) yields

p@) = pur(¥@), z€ Supp(p).
Therefore, Supp(p) = Supp(r(y)). Moreover, we have

1 d
0,R(-,p) =—— and O\R(,") = —r().
Pm dy

Hence, recalling that fi(y) := /Ly), from equation (S2.13) we find

Pm
d d
() 82,u(z,5) &' ) +cPu@zyy - o' P =0 zerGE). (S2.15)

The following condition has to hold for the roots of (S2.15), seen as an algebraic equation for y'(z), to
be real
J -
c>2 ‘—r()_z)‘ _HO)
dy |(92 u(z,y)

Yy

2 € 1(y(2))-

This gives condition (4.4) on the wave speed.
S3. Methods used to solve numerically the non-local PDE (4.2)

Adopting a time-splitting approach, which is based on the idea of decomposing the original
problem into simpler subproblems that are then sequentially solved at each time-step, we decompose
the non-local PDE (4.2) posed on Q := (0,7] X (0,X) X (0,Y), with T = 8, X = 25 and Y = 1, into
two parts — i.e. the diffusion-advection part corresponding to the following non-local PDE

Ome — i 0i(n. 0.p,) = azv &5
Pe=(ps),  pe(t,x) = [ ne(t, x,y) dy.
and the reaction part corresponding to the following integro-differential equation
o = R(y, po) ng,
g0 (¥, pe)n . (S3.2)
pe=T(po),  pe(t,x) = [ no(t,x,y) dy.

We complement (S3.1) with zero Neumann boundary conditions at x = 0 (we expect a constant step),
ug(1,X,y)

y = 0and y = Y. With the ansatz n.(t,x,y) = e = , the integro-differential equation (S3.2) can be
rewritten in the following alternative form

6 Ues = R(y7 p£)7
t Y us(txy) (833)
Pe = H(Ps)’ Ps(f, X) = f() e ¢ dy

AIMS Bioengineering Volume 9, Issue 1, 1-12.
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Preliminaries and notation We denote by [k, k] the set of integers between k; and k,. We
discretise Q via a uniform structured grid of steps At, Ax, Ay whereby #, = hAt and the (j, k)-th cell is

Kix = (xj-1, X)) X k-1, 6) - with  x; = jAx,  yr = kAy,

where j € [1,m,] and k € [1,m,], Ax = %, Ay = L and m,,m, € N. In particular, given Q :=
0, TIx0,X)x(0,Y),withT =8, X=25and Y =1, we choose At = 1074, Ax = 0.01 and Ay = 0.02.
Moreover, we let Né’j,k be the numerical approximation of the average of n.(1, x,y) over the cell K
and

my
ply=Ay > N,
k=1

be the average of p.(#;, x) over the interval (x;_;, x;). For simplicity of notation, in the remainder of
this section we drop the subscript &.

Numerical scheme
Step 1 We first solve numerically (S3.1) by using the following implicit-explicit scheme
. h * _ h * "
Nix = Nix s Ol Niaga = 0P Ny _ SN./,/«+1
At Hi Ax (Ay)?

3k *
- 2N/,k + Nj,k_1

(S3.4)
where i = iy, 6,P" | = (P}, = P})/Ax and

N3, ifoPt | <0,
* _ J» ]+§
Nt = _
itk N if 5xij+1 > 0.

Jj+Lk> 5
Zero-flux/Neumann boundary conditions are implemented at x =0,y =0andy =Y.

Step 2 Starting from Uj, = &ln (N;k), where N;, is obtained via (S3.4), we solve
numerically (S3.3) using the following implicit scheme

U™ = U", + At R(y,_1, P,
ik = ik Oy P e (S3.5)

hel _ hel Bl _ my Ik
Pj _H(pj ), P _Ayzk:1e £

Substituting the first equation in (S3.5) into the second equation yields

Ui+ AtR(yk,P';“)]

Y
Pt = Ay Y exp -
k=1

from which p*! and P*! are computed. Straightforward calculations then lead to U%;" and N’}

AIMS Bioengineering Volume 9, Issue 1, 1-12.
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